Integral of x^y dx
The solution
Detail solution
-
The integral of xn is n+1xn+1 when n=−1:
∫xydx={y+1xy+1log(x)fory=−1otherwise
-
Add the constant of integration:
{y+1xy+1log(x)fory=−1otherwise+constant
The answer is:
{y+1xy+1log(x)fory=−1otherwise+constant
The answer (Indefinite)
[src]
/ // 1 + y \
| ||x |
| y ||------ for y != -1|
| x dx = C + |<1 + y |
| || |
/ ||log(x) otherwise |
\\ /
∫xydx=C+{y+1xy+1log(x)fory=−1otherwise
/ 1 + y
| 1 0
|----- - ------ for And(y > -oo, y < oo, y != -1)
<1 + y 1 + y
|
| oo otherwise
\
{−y+10y+1+y+11∞fory>−∞∧y<∞∧y=−1otherwise
=
/ 1 + y
| 1 0
|----- - ------ for And(y > -oo, y < oo, y != -1)
<1 + y 1 + y
|
| oo otherwise
\
{−y+10y+1+y+11∞fory>−∞∧y<∞∧y=−1otherwise
Piecewise((1/(1 + y) - 0^(1 + y)/(1 + y), (y > -oo)∧(y < oo)∧(Ne(y, -1))), (oo, True))
Use the examples entering the upper and lower limits of integration.