1 / | | y | x dx | / 0
Integral(x^y, (x, 0, 1))
The integral of is when :
Add the constant of integration:
The answer is:
/ // 1 + y \
| ||x |
| y ||------ for y != -1|
| x dx = C + |<1 + y |
| || |
/ ||log(x) otherwise |
\\ /
/ 1 + y | 1 0 |----- - ------ for And(y > -oo, y < oo, y != -1) <1 + y 1 + y | | oo otherwise \
=
/ 1 + y | 1 0 |----- - ------ for And(y > -oo, y < oo, y != -1) <1 + y 1 + y | | oo otherwise \
Piecewise((1/(1 + y) - 0^(1 + y)/(1 + y), (y > -oo)∧(y < oo)∧(Ne(y, -1))), (oo, True))
Use the examples entering the upper and lower limits of integration.