Mister Exam

Integral of arctgx/y dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2           
  /           
 |            
 |  acot(x)   
 |  ------- dy
 |     y      
 |            
/             
1             
$$\int\limits_{1}^{2} \frac{\operatorname{acot}{\left(x \right)}}{y}\, dy$$
Integral(acot(x)/y, (y, 1, 2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is .

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 | acot(x)                        
 | ------- dy = C + acot(x)*log(y)
 |    y                           
 |                                
/                                 
$$\int \frac{\operatorname{acot}{\left(x \right)}}{y}\, dy = C + \log{\left(y \right)} \operatorname{acot}{\left(x \right)}$$
The answer [src]
acot(x)*log(2)
$$\log{\left(2 \right)} \operatorname{acot}{\left(x \right)}$$
=
=
acot(x)*log(2)
$$\log{\left(2 \right)} \operatorname{acot}{\left(x \right)}$$
acot(x)*log(2)

    Use the examples entering the upper and lower limits of integration.