Mister Exam

Integral of arctgx/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/2          
  /           
 |            
 |  acot(x)   
 |  ------- dx
 |     x      
 |            
/             
0             
$$\int\limits_{0}^{\frac{1}{2}} \frac{\operatorname{acot}{\left(x \right)}}{x}\, dx$$
Integral(acot(x)/x, (x, 0, 1/2))
The answer (Indefinite) [src]
  /                   /          
 |                   |           
 | acot(x)           | acot(x)   
 | ------- dx = C +  | ------- dx
 |    x              |    x      
 |                   |           
/                   /            
$$\int \frac{\operatorname{acot}{\left(x \right)}}{x}\, dx = C + \int \frac{\operatorname{acot}{\left(x \right)}}{x}\, dx$$
The answer [src]
 1/2          
  /           
 |            
 |  acot(x)   
 |  ------- dx
 |     x      
 |            
/             
0             
$$\int\limits_{0}^{\frac{1}{2}} \frac{\operatorname{acot}{\left(x \right)}}{x}\, dx$$
=
=
 1/2          
  /           
 |            
 |  acot(x)   
 |  ------- dx
 |     x      
 |            
/             
0             
$$\int\limits_{0}^{\frac{1}{2}} \frac{\operatorname{acot}{\left(x \right)}}{x}\, dx$$
Integral(acot(x)/x, (x, 0, 1/2))
Numerical answer [src]
68.7698884757298
68.7698884757298

    Use the examples entering the upper and lower limits of integration.