Mister Exam

Other calculators


arcsin(x)*arcsin(x)

Integral of arcsin(x)*arcsin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  asin(x)*asin(x) dx
 |                    
/                     
0                     
01asin(x)asin(x)dx\int\limits_{0}^{1} \operatorname{asin}{\left(x \right)} \operatorname{asin}{\left(x \right)}\, dx
Integral(asin(x)*asin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=asin2(x)u{\left(x \right)} = \operatorname{asin}^{2}{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

    Then du(x)=2asin(x)1x2\operatorname{du}{\left(x \right)} = \frac{2 \operatorname{asin}{\left(x \right)}}{\sqrt{1 - x^{2}}}.

    To find v(x)v{\left(x \right)}:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=2asin(x)u{\left(x \right)} = 2 \operatorname{asin}{\left(x \right)} and let dv(x)=x1x2\operatorname{dv}{\left(x \right)} = \frac{x}{\sqrt{1 - x^{2}}}.

    Then du(x)=21x2\operatorname{du}{\left(x \right)} = \frac{2}{\sqrt{1 - x^{2}}}.

    To find v(x)v{\left(x \right)}:

    1. Let u=1x2u = 1 - x^{2}.

      Then let du=2xdxdu = - 2 x dx and substitute du2- \frac{du}{2}:

      (12u)du\int \left(- \frac{1}{2 \sqrt{u}}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu2\int \frac{1}{\sqrt{u}}\, du = - \frac{\int \frac{1}{\sqrt{u}}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1udu=2u\int \frac{1}{\sqrt{u}}\, du = 2 \sqrt{u}

        So, the result is: u- \sqrt{u}

      Now substitute uu back in:

      1x2- \sqrt{1 - x^{2}}

    Now evaluate the sub-integral.

  3. The integral of a constant is the constant times the variable of integration:

    (2)dx=2x\int \left(-2\right)\, dx = - 2 x

  4. Add the constant of integration:

    xasin2(x)2x+21x2asin(x)+constantx \operatorname{asin}^{2}{\left(x \right)} - 2 x + 2 \sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}+ \mathrm{constant}


The answer is:

xasin2(x)2x+21x2asin(x)+constantx \operatorname{asin}^{2}{\left(x \right)} - 2 x + 2 \sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                 ________        
 |                                      2          /      2         
 | asin(x)*asin(x) dx = C - 2*x + x*asin (x) + 2*\/  1 - x  *asin(x)
 |                                                                  
/                                                                   
asin(x)asin(x)dx=C+xasin2(x)2x+21x2asin(x)\int \operatorname{asin}{\left(x \right)} \operatorname{asin}{\left(x \right)}\, dx = C + x \operatorname{asin}^{2}{\left(x \right)} - 2 x + 2 \sqrt{1 - x^{2}} \operatorname{asin}{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.05.0
The answer [src]
       2
     pi 
-2 + ---
      4 
2+π24-2 + \frac{\pi^{2}}{4}
=
=
       2
     pi 
-2 + ---
      4 
2+π24-2 + \frac{\pi^{2}}{4}
-2 + pi^2/4
Numerical answer [src]
0.46740110027234
0.46740110027234
The graph
Integral of arcsin(x)*arcsin(x) dx

    Use the examples entering the upper and lower limits of integration.