Mister Exam

Integral of (3x+4)² dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           2   
 |  (3*x + 4)  dx
 |               
/                
0                
01(3x+4)2dx\int\limits_{0}^{1} \left(3 x + 4\right)^{2}\, dx
Integral((3*x + 4)^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=3x+4u = 3 x + 4.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      u23du\int \frac{u^{2}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u2du=u2du3\int u^{2}\, du = \frac{\int u^{2}\, du}{3}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        So, the result is: u39\frac{u^{3}}{9}

      Now substitute uu back in:

      (3x+4)39\frac{\left(3 x + 4\right)^{3}}{9}

    Method #2

    1. Rewrite the integrand:

      (3x+4)2=9x2+24x+16\left(3 x + 4\right)^{2} = 9 x^{2} + 24 x + 16

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        9x2dx=9x2dx\int 9 x^{2}\, dx = 9 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 3x33 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        24xdx=24xdx\int 24 x\, dx = 24 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 12x212 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        16dx=16x\int 16\, dx = 16 x

      The result is: 3x3+12x2+16x3 x^{3} + 12 x^{2} + 16 x

  2. Now simplify:

    (3x+4)39\frac{\left(3 x + 4\right)^{3}}{9}

  3. Add the constant of integration:

    (3x+4)39+constant\frac{\left(3 x + 4\right)^{3}}{9}+ \mathrm{constant}


The answer is:

(3x+4)39+constant\frac{\left(3 x + 4\right)^{3}}{9}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              3
 |          2          (3*x + 4) 
 | (3*x + 4)  dx = C + ----------
 |                         9     
/                                
(3x+4)2dx=C+(3x+4)39\int \left(3 x + 4\right)^{2}\, dx = C + \frac{\left(3 x + 4\right)^{3}}{9}
The graph
0.001.000.100.200.300.400.500.600.700.800.90050
The answer [src]
31
3131
=
=
31
3131
31
Numerical answer [src]
31.0
31.0
The graph
Integral of (3x+4)² dx

    Use the examples entering the upper and lower limits of integration.