Integral of (3x+4)² dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=3x+4.
Then let du=3dx and substitute 3du:
∫3u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=3∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 9u3
Now substitute u back in:
9(3x+4)3
Method #2
-
Rewrite the integrand:
(3x+4)2=9x2+24x+16
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫9x2dx=9∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: 3x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫24xdx=24∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 12x2
-
The integral of a constant is the constant times the variable of integration:
∫16dx=16x
The result is: 3x3+12x2+16x
-
Now simplify:
9(3x+4)3
-
Add the constant of integration:
9(3x+4)3+constant
The answer is:
9(3x+4)3+constant
The answer (Indefinite)
[src]
/
| 3
| 2 (3*x + 4)
| (3*x + 4) dx = C + ----------
| 9
/
∫(3x+4)2dx=C+9(3x+4)3
The graph
Use the examples entering the upper and lower limits of integration.