Mister Exam

Other calculators

Integral of (e^(arcsinx))arcsinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |   asin(x)           
 |  E       *asin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} e^{\operatorname{asin}{\left(x \right)}} \operatorname{asin}{\left(x \right)}\, dx$$
Integral(E^asin(x)*asin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                               ________                 
 |                              asin(x)              asin(x)     /      2           asin(x)
 |  asin(x)                  x*e          x*asin(x)*e          \/  1 - x  *asin(x)*e       
 | E       *asin(x) dx = C - ---------- + ------------------ + ----------------------------
 |                               2                2                         2              
/                                                                                          
$$\int e^{\operatorname{asin}{\left(x \right)}} \operatorname{asin}{\left(x \right)}\, dx = C + \frac{x e^{\operatorname{asin}{\left(x \right)}} \operatorname{asin}{\left(x \right)}}{2} - \frac{x e^{\operatorname{asin}{\left(x \right)}}}{2} + \frac{\sqrt{1 - x^{2}} e^{\operatorname{asin}{\left(x \right)}} \operatorname{asin}{\left(x \right)}}{2}$$
The graph
The answer [src]
   pi       pi
   --       --
   2        2 
  e     pi*e  
- --- + ------
   2      4   
$$- \frac{e^{\frac{\pi}{2}}}{2} + \frac{\pi e^{\frac{\pi}{2}}}{4}$$
=
=
   pi       pi
   --       --
   2        2 
  e     pi*e  
- --- + ------
   2      4   
$$- \frac{e^{\frac{\pi}{2}}}{2} + \frac{\pi e^{\frac{\pi}{2}}}{4}$$
-exp(pi/2)/2 + pi*exp(pi/2)/4
Numerical answer [src]
1.37290140959248
1.37290140959248

    Use the examples entering the upper and lower limits of integration.