Integral of (e^(arcsinx))arcsinx dx
The solution
The answer (Indefinite)
[src]
/ ________
| asin(x) asin(x) / 2 asin(x)
| asin(x) x*e x*asin(x)*e \/ 1 - x *asin(x)*e
| E *asin(x) dx = C - ---------- + ------------------ + ----------------------------
| 2 2 2
/
∫easin(x)asin(x)dx=C+2xeasin(x)asin(x)−2xeasin(x)+21−x2easin(x)asin(x)
The graph
pi pi
-- --
2 2
e pi*e
- --- + ------
2 4
−2e2π+4πe2π
=
pi pi
-- --
2 2
e pi*e
- --- + ------
2 4
−2e2π+4πe2π
-exp(pi/2)/2 + pi*exp(pi/2)/4
Use the examples entering the upper and lower limits of integration.