Mister Exam

Other calculators

Integral of (6x+3)/((x+1)(x-4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |      6*x + 3       
 |  --------------- dx
 |  (x + 1)*(x - 4)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{6 x + 3}{\left(x - 4\right) \left(x + 1\right)}\, dx$$
Integral((6*x + 3)/(((x + 1)*(x - 4))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |     6*x + 3              3*log(1 + x)   27*log(-4 + x)
 | --------------- dx = C + ------------ + --------------
 | (x + 1)*(x - 4)               5               5       
 |                                                       
/                                                        
$$\int \frac{6 x + 3}{\left(x - 4\right) \left(x + 1\right)}\, dx = C + \frac{27 \log{\left(x - 4 \right)}}{5} + \frac{3 \log{\left(x + 1 \right)}}{5}$$
The graph
The answer [src]
  27*log(4)   3*log(2)   27*log(3)
- --------- + -------- + ---------
      5          5           5    
$$- \frac{27 \log{\left(4 \right)}}{5} + \frac{3 \log{\left(2 \right)}}{5} + \frac{27 \log{\left(3 \right)}}{5}$$
=
=
  27*log(4)   3*log(2)   27*log(3)
- --------- + -------- + ---------
      5          5           5    
$$- \frac{27 \log{\left(4 \right)}}{5} + \frac{3 \log{\left(2 \right)}}{5} + \frac{27 \log{\left(3 \right)}}{5}$$
-27*log(4)/5 + 3*log(2)/5 + 27*log(3)/5
Numerical answer [src]
-1.13759488290365
-1.13759488290365

    Use the examples entering the upper and lower limits of integration.