Integral of (5x-3)(sqrt)^3xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x.
Then let du=2xdx and substitute du:
∫(10u8−6u6)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫10u8du=10∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: 910u9
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−6u6)du=−6∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −76u7
The result is: 910u9−76u7
Now substitute u back in:
910x29−76x27
Method #2
-
Rewrite the integrand:
x(5x−3)(x)3=5x27−3x25
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫5x27dx=5∫x27dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x27dx=92x29
So, the result is: 910x29
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3x25)dx=−3∫x25dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x25dx=72x27
So, the result is: −76x27
The result is: 910x29−76x27
-
Now simplify:
632x27(35x−27)
-
Add the constant of integration:
632x27(35x−27)+constant
The answer is:
632x27(35x−27)+constant
The answer (Indefinite)
[src]
/
|
| 3 7/2 9/2
| ___ 6*x 10*x
| (5*x - 3)*\/ x *x dx = C - ------ + -------
| 7 9
/
∫x(5x−3)(x)3dx=C+910x29−76x27
The graph
Use the examples entering the upper and lower limits of integration.