Mister Exam

Other calculators

Integral of (5x-3)(sqrt)^3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |                 3     
 |              ___      
 |  (5*x - 3)*\/ x  *x dx
 |                       
/                        
0                        
01x(5x3)(x)3dx\int\limits_{0}^{1} x \left(5 x - 3\right) \left(\sqrt{x}\right)^{3}\, dx
Integral(((5*x - 3)*(sqrt(x))^3)*x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = \sqrt{x}.

      Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute dudu:

      (10u86u6)du\int \left(10 u^{8} - 6 u^{6}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          10u8du=10u8du\int 10 u^{8}\, du = 10 \int u^{8}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          So, the result is: 10u99\frac{10 u^{9}}{9}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (6u6)du=6u6du\int \left(- 6 u^{6}\right)\, du = - 6 \int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          So, the result is: 6u77- \frac{6 u^{7}}{7}

        The result is: 10u996u77\frac{10 u^{9}}{9} - \frac{6 u^{7}}{7}

      Now substitute uu back in:

      10x9296x727\frac{10 x^{\frac{9}{2}}}{9} - \frac{6 x^{\frac{7}{2}}}{7}

    Method #2

    1. Rewrite the integrand:

      x(5x3)(x)3=5x723x52x \left(5 x - 3\right) \left(\sqrt{x}\right)^{3} = 5 x^{\frac{7}{2}} - 3 x^{\frac{5}{2}}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        5x72dx=5x72dx\int 5 x^{\frac{7}{2}}\, dx = 5 \int x^{\frac{7}{2}}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x72dx=2x929\int x^{\frac{7}{2}}\, dx = \frac{2 x^{\frac{9}{2}}}{9}

        So, the result is: 10x929\frac{10 x^{\frac{9}{2}}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3x52)dx=3x52dx\int \left(- 3 x^{\frac{5}{2}}\right)\, dx = - 3 \int x^{\frac{5}{2}}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x52dx=2x727\int x^{\frac{5}{2}}\, dx = \frac{2 x^{\frac{7}{2}}}{7}

        So, the result is: 6x727- \frac{6 x^{\frac{7}{2}}}{7}

      The result is: 10x9296x727\frac{10 x^{\frac{9}{2}}}{9} - \frac{6 x^{\frac{7}{2}}}{7}

  2. Now simplify:

    2x72(35x27)63\frac{2 x^{\frac{7}{2}} \left(35 x - 27\right)}{63}

  3. Add the constant of integration:

    2x72(35x27)63+constant\frac{2 x^{\frac{7}{2}} \left(35 x - 27\right)}{63}+ \mathrm{constant}


The answer is:

2x72(35x27)63+constant\frac{2 x^{\frac{7}{2}} \left(35 x - 27\right)}{63}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            
 |                                             
 |                3               7/2       9/2
 |             ___             6*x      10*x   
 | (5*x - 3)*\/ x  *x dx = C - ------ + -------
 |                               7         9   
/                                              
x(5x3)(x)3dx=C+10x9296x727\int x \left(5 x - 3\right) \left(\sqrt{x}\right)^{3}\, dx = C + \frac{10 x^{\frac{9}{2}}}{9} - \frac{6 x^{\frac{7}{2}}}{7}
The graph
0.001.000.100.200.300.400.500.600.700.800.902.5-2.5
The answer [src]
16
--
63
1663\frac{16}{63}
=
=
16
--
63
1663\frac{16}{63}
16/63
Numerical answer [src]
0.253968253968254
0.253968253968254

    Use the examples entering the upper and lower limits of integration.