Mister Exam

Other calculators


x^3(1-x)^2

Integral of x^3(1-x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   3        2   
 |  x *(1 - x)  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x^{3} \left(1 - x\right)^{2}\, dx$$
Integral(x^3*(1 - x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                         5    4    6
 |  3        2          2*x    x    x 
 | x *(1 - x)  dx = C - ---- + -- + --
 |                       5     4    6 
/                                     
$$\int x^{3} \left(1 - x\right)^{2}\, dx = C + \frac{x^{6}}{6} - \frac{2 x^{5}}{5} + \frac{x^{4}}{4}$$
The graph
The answer [src]
1/60
$$\frac{1}{60}$$
=
=
1/60
$$\frac{1}{60}$$
Numerical answer [src]
0.0166666666666667
0.0166666666666667
The graph
Integral of x^3(1-x)^2 dx

    Use the examples entering the upper and lower limits of integration.