Mister Exam

Other calculators

Integral of 0.5*cos(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -asin(4/5)         
      /             
     |              
     |     cos(x)   
     |     ------ dx
     |       2      
     |              
    /               
   -pi              
   ----             
    2               
π2asin(45)cos(x)2dx\int\limits_{- \frac{\pi}{2}}^{- \operatorname{asin}{\left(\frac{4}{5} \right)}} \frac{\cos{\left(x \right)}}{2}\, dx
Integral(cos(x)/2, (x, -pi/2, -asin(4/5)))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    cos(x)2dx=cos(x)dx2\int \frac{\cos{\left(x \right)}}{2}\, dx = \frac{\int \cos{\left(x \right)}\, dx}{2}

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: sin(x)2\frac{\sin{\left(x \right)}}{2}

  2. Add the constant of integration:

    sin(x)2+constant\frac{\sin{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

sin(x)2+constant\frac{\sin{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 | cos(x)          sin(x)
 | ------ dx = C + ------
 |   2               2   
 |                       
/                        
cos(x)2dx=C+sin(x)2\int \frac{\cos{\left(x \right)}}{2}\, dx = C + \frac{\sin{\left(x \right)}}{2}
The graph
-1.55-1.50-1.45-1.40-1.35-1.30-1.25-1.20-1.15-1.10-1.05-1.00-0.951.0-1.0
The answer [src]
1/10
110\frac{1}{10}
=
=
1/10
110\frac{1}{10}
1/10
Numerical answer [src]
0.1
0.1

    Use the examples entering the upper and lower limits of integration.