Mister Exam

Other calculators


(4x+3)^3

Integral of (4x+3)^3 dX

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |           3   
 |  (4*x + 3)  dx
 |               
/                
-1               
12(4x+3)3dx\int\limits_{-1}^{2} \left(4 x + 3\right)^{3}\, dx
Integral((4*x + 3)^3, (x, -1, 2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=4x+3u = 4 x + 3.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      u316du\int \frac{u^{3}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u34du=u3du4\int \frac{u^{3}}{4}\, du = \frac{\int u^{3}\, du}{4}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

        So, the result is: u416\frac{u^{4}}{16}

      Now substitute uu back in:

      (4x+3)416\frac{\left(4 x + 3\right)^{4}}{16}

    Method #2

    1. Rewrite the integrand:

      (4x+3)3=64x3+144x2+108x+27\left(4 x + 3\right)^{3} = 64 x^{3} + 144 x^{2} + 108 x + 27

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        64x3dx=64x3dx\int 64 x^{3}\, dx = 64 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 16x416 x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        144x2dx=144x2dx\int 144 x^{2}\, dx = 144 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 48x348 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        108xdx=108xdx\int 108 x\, dx = 108 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 54x254 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        27dx=27x\int 27\, dx = 27 x

      The result is: 16x4+48x3+54x2+27x16 x^{4} + 48 x^{3} + 54 x^{2} + 27 x

  2. Now simplify:

    (4x+3)416\frac{\left(4 x + 3\right)^{4}}{16}

  3. Add the constant of integration:

    (4x+3)416+constant\frac{\left(4 x + 3\right)^{4}}{16}+ \mathrm{constant}


The answer is:

(4x+3)416+constant\frac{\left(4 x + 3\right)^{4}}{16}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              4
 |          3          (4*x + 3) 
 | (4*x + 3)  dx = C + ----------
 |                         16    
/                                
16x4+48x3+54x2+27x16\,x^4+48\,x^3+54\,x^2+27\,x
The graph
-1.00-0.75-0.50-0.252.000.000.250.500.751.001.251.501.752000-1000
The answer [src]
915
915915
=
=
915
915915
Numerical answer [src]
915.0
915.0
The graph
Integral of (4x+3)^3 dX

    Use the examples entering the upper and lower limits of integration.