Mister Exam

Integral of 4sin5x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  4*sin(5*x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} 4 \sin{\left(5 x \right)}\, dx$$
Integral(4*sin(5*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                     4*cos(5*x)
 | 4*sin(5*x) dx = C - ----------
 |                         5     
/                                
$$-{{4\,\cos \left(5\,x\right)}\over{5}}$$
The graph
The answer [src]
4   4*cos(5)
- - --------
5      5    
$$4\,\left({{1}\over{5}}-{{\cos 5}\over{5}}\right)$$
=
=
4   4*cos(5)
- - --------
5      5    
$$- \frac{4 \cos{\left(5 \right)}}{5} + \frac{4}{5}$$
Numerical answer [src]
0.573070251629419
0.573070251629419
The graph
Integral of 4sin5x dx

    Use the examples entering the upper and lower limits of integration.