Mister Exam

Other calculators

Integral of ((x^2)-4)*sin(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  / 2    \            
 |  \x  - 4/*sin(5*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(x^{2} - 4\right) \sin{\left(5 x \right)}\, dx$$
Integral((x^2 - 4)*sin(5*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                    
 |                                            2                        
 | / 2    \                   102*cos(5*x)   x *cos(5*x)   2*x*sin(5*x)
 | \x  - 4/*sin(5*x) dx = C + ------------ - ----------- + ------------
 |                                125             5             25     
/                                                                      
$$\int \left(x^{2} - 4\right) \sin{\left(5 x \right)}\, dx = C - \frac{x^{2} \cos{\left(5 x \right)}}{5} + \frac{2 x \sin{\left(5 x \right)}}{25} + \frac{102 \cos{\left(5 x \right)}}{125}$$
The graph
The answer [src]
  102   2*sin(5)   77*cos(5)
- --- + -------- + ---------
  125      25         125   
$$- \frac{102}{125} + \frac{2 \sin{\left(5 \right)}}{25} + \frac{77 \cos{\left(5 \right)}}{125}$$
=
=
  102   2*sin(5)   77*cos(5)
- --- + -------- + ---------
  125      25         125   
$$- \frac{102}{125} + \frac{2 \sin{\left(5 \right)}}{25} + \frac{77 \cos{\left(5 \right)}}{125}$$
-102/125 + 2*sin(5)/25 + 77*cos(5)/125
Numerical answer [src]
-0.717978035727704
-0.717978035727704

    Use the examples entering the upper and lower limits of integration.