Mister Exam

Other calculators


4cost+t^2

Integral of 4cost+t^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /            2\   
 |  \4*cos(t) + t / dt
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(t^{2} + 4 \cos{\left(t \right)}\right)\, dt$$
Integral(4*cos(t) + t^2, (t, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                      3
 | /            2\                     t 
 | \4*cos(t) + t / dt = C + 4*sin(t) + --
 |                                     3 
/                                        
$$\int \left(t^{2} + 4 \cos{\left(t \right)}\right)\, dt = C + \frac{t^{3}}{3} + 4 \sin{\left(t \right)}$$
The graph
The answer [src]
1/3 + 4*sin(1)
$$\frac{1}{3} + 4 \sin{\left(1 \right)}$$
=
=
1/3 + 4*sin(1)
$$\frac{1}{3} + 4 \sin{\left(1 \right)}$$
Numerical answer [src]
3.69921727256492
3.69921727256492
The graph
Integral of 4cost+t^2 dx

    Use the examples entering the upper and lower limits of integration.