Mister Exam

Other calculators


3x^2+6x

Integral of 3x^2+6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /   2      \   
 |  \3*x  + 6*x/ dx
 |                 
/                  
0                  
01(3x2+6x)dx\int\limits_{0}^{1} \left(3 x^{2} + 6 x\right)\, dx
Integral(3*x^2 + 6*x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      6xdx=6xdx\int 6 x\, dx = 6 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 3x23 x^{2}

    The result is: x3+3x2x^{3} + 3 x^{2}

  2. Now simplify:

    x2(x+3)x^{2} \left(x + 3\right)

  3. Add the constant of integration:

    x2(x+3)+constantx^{2} \left(x + 3\right)+ \mathrm{constant}


The answer is:

x2(x+3)+constantx^{2} \left(x + 3\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 | /   2      \           3      2
 | \3*x  + 6*x/ dx = C + x  + 3*x 
 |                                
/                                 
(3x2+6x)dx=C+x3+3x2\int \left(3 x^{2} + 6 x\right)\, dx = C + x^{3} + 3 x^{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
4
44
=
=
4
44
4
Numerical answer [src]
4.0
4.0
The graph
Integral of 3x^2+6x dx

    Use the examples entering the upper and lower limits of integration.