Mister Exam

Other calculators

Integral of 3x^2-6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5                
  /                
 |                 
 |  /   2      \   
 |  \3*x  - 6*x/ dx
 |                 
/                  
2                  
25(3x26x)dx\int\limits_{2}^{5} \left(3 x^{2} - 6 x\right)\, dx
Integral(3*x^2 - 6*x, (x, 2, 5))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (6x)dx=6xdx\int \left(- 6 x\right)\, dx = - 6 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 3x2- 3 x^{2}

    The result is: x33x2x^{3} - 3 x^{2}

  2. Now simplify:

    x2(x3)x^{2} \left(x - 3\right)

  3. Add the constant of integration:

    x2(x3)+constantx^{2} \left(x - 3\right)+ \mathrm{constant}


The answer is:

x2(x3)+constantx^{2} \left(x - 3\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 | /   2      \           3      2
 | \3*x  - 6*x/ dx = C + x  - 3*x 
 |                                
/                                 
(3x26x)dx=C+x33x2\int \left(3 x^{2} - 6 x\right)\, dx = C + x^{3} - 3 x^{2}
The graph
2.005.002.252.502.753.003.253.503.754.004.254.504.75-50100
The answer [src]
54
5454
=
=
54
5454
54
Numerical answer [src]
54.0
54.0

    Use the examples entering the upper and lower limits of integration.