Mister Exam

Other calculators

Integral of (3sinx-e^x+2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /            x    \   
 |  \3*sin(x) - E  + 2/ dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\left(- e^{x} + 3 \sin{\left(x \right)}\right) + 2\right)\, dx$$
Integral(3*sin(x) - E^x + 2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                                 
 | /            x    \           x                 
 | \3*sin(x) - E  + 2/ dx = C - e  - 3*cos(x) + 2*x
 |                                                 
/                                                  
$$\int \left(\left(- e^{x} + 3 \sin{\left(x \right)}\right) + 2\right)\, dx = C + 2 x - e^{x} - 3 \cos{\left(x \right)}$$
The graph
The answer [src]
6 - E - 3*cos(1)
$$- e - 3 \cos{\left(1 \right)} + 6$$
=
=
6 - E - 3*cos(1)
$$- e - 3 \cos{\left(1 \right)} + 6$$
6 - E - 3*cos(1)
Numerical answer [src]
1.66081125393654
1.66081125393654

    Use the examples entering the upper and lower limits of integration.