Mister Exam

Integral of 3sin3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 6               
  /              
 |               
 |  3*sin(3*x) dx
 |               
/                
0                
0π63sin(3x)dx\int\limits_{0}^{\frac{\pi}{6}} 3 \sin{\left(3 x \right)}\, dx
Integral(3*sin(3*x), (x, 0, pi/6))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    3sin(3x)dx=3sin(3x)dx\int 3 \sin{\left(3 x \right)}\, dx = 3 \int \sin{\left(3 x \right)}\, dx

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      sin(u)3du\int \frac{\sin{\left(u \right)}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du3\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

      Now substitute uu back in:

      cos(3x)3- \frac{\cos{\left(3 x \right)}}{3}

    So, the result is: cos(3x)- \cos{\left(3 x \right)}

  2. Add the constant of integration:

    cos(3x)+constant- \cos{\left(3 x \right)}+ \mathrm{constant}


The answer is:

cos(3x)+constant- \cos{\left(3 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                             
 | 3*sin(3*x) dx = C - cos(3*x)
 |                             
/                              
3sin(3x)dx=Ccos(3x)\int 3 \sin{\left(3 x \right)}\, dx = C - \cos{\left(3 x \right)}
The graph
0.000.050.100.150.200.250.300.350.400.450.505-5
The answer [src]
1
11
=
=
1
11
1
Numerical answer [src]
1.0
1.0
The graph
Integral of 3sin3x dx

    Use the examples entering the upper and lower limits of integration.