1 / | | (3*cos(x) - 4*sin(x)) dx | / 0
Integral(3*cos(x) - 4*sin(x), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | (3*cos(x) - 4*sin(x)) dx = C + 3*sin(x) + 4*cos(x) | /
-4 + 3*sin(1) + 4*cos(1)
=
-4 + 3*sin(1) + 4*cos(1)
-4 + 3*sin(1) + 4*cos(1)
Use the examples entering the upper and lower limits of integration.