Mister Exam

Other calculators

Integral of (2x+3)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2              
  /              
 |               
 |           3   
 |  (2*x + 3)  dx
 |               
/                
1                
12(2x+3)3dx\int\limits_{1}^{2} \left(2 x + 3\right)^{3}\, dx
Integral((2*x + 3)^3, (x, 1, 2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x+3u = 2 x + 3.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      u32du\int \frac{u^{3}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u3du=u3du2\int u^{3}\, du = \frac{\int u^{3}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u3du=u44\int u^{3}\, du = \frac{u^{4}}{4}

        So, the result is: u48\frac{u^{4}}{8}

      Now substitute uu back in:

      (2x+3)48\frac{\left(2 x + 3\right)^{4}}{8}

    Method #2

    1. Rewrite the integrand:

      (2x+3)3=8x3+36x2+54x+27\left(2 x + 3\right)^{3} = 8 x^{3} + 36 x^{2} + 54 x + 27

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        8x3dx=8x3dx\int 8 x^{3}\, dx = 8 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 2x42 x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        36x2dx=36x2dx\int 36 x^{2}\, dx = 36 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 12x312 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        54xdx=54xdx\int 54 x\, dx = 54 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 27x227 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        27dx=27x\int 27\, dx = 27 x

      The result is: 2x4+12x3+27x2+27x2 x^{4} + 12 x^{3} + 27 x^{2} + 27 x

  2. Now simplify:

    (2x+3)48\frac{\left(2 x + 3\right)^{4}}{8}

  3. Add the constant of integration:

    (2x+3)48+constant\frac{\left(2 x + 3\right)^{4}}{8}+ \mathrm{constant}


The answer is:

(2x+3)48+constant\frac{\left(2 x + 3\right)^{4}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              4
 |          3          (2*x + 3) 
 | (2*x + 3)  dx = C + ----------
 |                         8     
/                                
(2x+3)3dx=C+(2x+3)48\int \left(2 x + 3\right)^{3}\, dx = C + \frac{\left(2 x + 3\right)^{4}}{8}
The graph
1.002.001.101.201.301.401.501.601.701.801.900500
The answer [src]
222
222222
=
=
222
222222
222
Numerical answer [src]
222.0
222.0

    Use the examples entering the upper and lower limits of integration.