Integral of 2x/(✓x²+✓8)dx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x.
Then let du=2xdx and substitute 4du:
∫u2+224u3du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2+22u3du=4∫u2+22u3du
-
Let u=u2.
Then let du=2udu and substitute du:
∫2u+42udu
-
Rewrite the integrand:
2u+42u=21−u+222
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u+222)du=−2∫u+221du
-
Let u=u+22.
Then let du=du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u+22)
So, the result is: −2log(u+22)
The result is: 2u−2log(u+22)
Now substitute u back in:
2u2−2log(u2+22)
So, the result is: 2u2−42log(u2+22)
Now substitute u back in:
2x−42log(x+22)
Method #2
-
Rewrite the integrand:
(x)2+82x=x+222x
-
The integral of a constant times a function is the constant times the integral of the function:
∫x+222xdx=2∫x+22xdx
-
Rewrite the integrand:
x+22x=1−x+2222
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+2222)dx=−22∫x+221dx
-
Let u=x+22.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+22)
So, the result is: −22log(x+22)
The result is: x−22log(x+22)
So, the result is: 2x−42log(x+22)
Method #3
-
Rewrite the integrand:
(x)2+82x=x+222x
-
The integral of a constant times a function is the constant times the integral of the function:
∫x+222xdx=2∫x+22xdx
-
Rewrite the integrand:
x+22x=1−x+2222
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+2222)dx=−22∫x+221dx
-
Let u=x+22.
Then let du=dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(x+22)
So, the result is: −22log(x+22)
The result is: x−22log(x+22)
So, the result is: 2x−42log(x+22)
-
Add the constant of integration:
2x−42log(x+22)+constant
The answer is:
2x−42log(x+22)+constant
The answer (Indefinite)
[src]
/
|
| 2*x ___ / ___\
| -------------- dx = C + 2*x - 4*\/ 2 *log\x + 2*\/ 2 /
| 2
| ___ ___
| \/ x + \/ 8
|
/
∫(x)2+82xdx=C+2x−42log(x+22)
The graph
___ / ___\ ___ / ___\
4 - 4*\/ 2 *log\4 + 2*\/ 2 / + 4*\/ 2 *log\2 + 2*\/ 2 /
−42log(22+4)+4+42log(2+22)
=
___ / ___\ ___ / ___\
4 - 4*\/ 2 *log\4 + 2*\/ 2 / + 4*\/ 2 *log\2 + 2*\/ 2 /
−42log(22+4)+4+42log(2+22)
4 - 4*sqrt(2)*log(4 + 2*sqrt(2)) + 4*sqrt(2)*log(2 + 2*sqrt(2))
Use the examples entering the upper and lower limits of integration.