Mister Exam

Other calculators

Integral of 2x/(✓x²+✓8)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                  
  /                  
 |                   
 |       2*x         
 |  -------------- dx
 |       2           
 |    ___      ___   
 |  \/ x   + \/ 8    
 |                   
/                    
2                    
242x(x)2+8dx\int\limits_{2}^{4} \frac{2 x}{\left(\sqrt{x}\right)^{2} + \sqrt{8}}\, dx
Integral((2*x)/((sqrt(x))^2 + sqrt(8)), (x, 2, 4))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = \sqrt{x}.

      Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 4du4 du:

      4u3u2+22du\int \frac{4 u^{3}}{u^{2} + 2 \sqrt{2}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u3u2+22du=4u3u2+22du\int \frac{u^{3}}{u^{2} + 2 \sqrt{2}}\, du = 4 \int \frac{u^{3}}{u^{2} + 2 \sqrt{2}}\, du

        1. Let u=u2u = u^{2}.

          Then let du=2ududu = 2 u du and substitute dudu:

          u2u+42du\int \frac{u}{2 u + 4 \sqrt{2}}\, du

          1. Rewrite the integrand:

            u2u+42=122u+22\frac{u}{2 u + 4 \sqrt{2}} = \frac{1}{2} - \frac{\sqrt{2}}{u + 2 \sqrt{2}}

          2. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (2u+22)du=21u+22du\int \left(- \frac{\sqrt{2}}{u + 2 \sqrt{2}}\right)\, du = - \sqrt{2} \int \frac{1}{u + 2 \sqrt{2}}\, du

              1. Let u=u+22u = u + 2 \sqrt{2}.

                Then let du=dudu = du and substitute dudu:

                1udu\int \frac{1}{u}\, du

                1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

                Now substitute uu back in:

                log(u+22)\log{\left(u + 2 \sqrt{2} \right)}

              So, the result is: 2log(u+22)- \sqrt{2} \log{\left(u + 2 \sqrt{2} \right)}

            The result is: u22log(u+22)\frac{u}{2} - \sqrt{2} \log{\left(u + 2 \sqrt{2} \right)}

          Now substitute uu back in:

          u222log(u2+22)\frac{u^{2}}{2} - \sqrt{2} \log{\left(u^{2} + 2 \sqrt{2} \right)}

        So, the result is: 2u242log(u2+22)2 u^{2} - 4 \sqrt{2} \log{\left(u^{2} + 2 \sqrt{2} \right)}

      Now substitute uu back in:

      2x42log(x+22)2 x - 4 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

    Method #2

    1. Rewrite the integrand:

      2x(x)2+8=2xx+22\frac{2 x}{\left(\sqrt{x}\right)^{2} + \sqrt{8}} = \frac{2 x}{x + 2 \sqrt{2}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      2xx+22dx=2xx+22dx\int \frac{2 x}{x + 2 \sqrt{2}}\, dx = 2 \int \frac{x}{x + 2 \sqrt{2}}\, dx

      1. Rewrite the integrand:

        xx+22=122x+22\frac{x}{x + 2 \sqrt{2}} = 1 - \frac{2 \sqrt{2}}{x + 2 \sqrt{2}}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        1. The integral of a constant times a function is the constant times the integral of the function:

          (22x+22)dx=221x+22dx\int \left(- \frac{2 \sqrt{2}}{x + 2 \sqrt{2}}\right)\, dx = - 2 \sqrt{2} \int \frac{1}{x + 2 \sqrt{2}}\, dx

          1. Let u=x+22u = x + 2 \sqrt{2}.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x+22)\log{\left(x + 2 \sqrt{2} \right)}

          So, the result is: 22log(x+22)- 2 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

        The result is: x22log(x+22)x - 2 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

      So, the result is: 2x42log(x+22)2 x - 4 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

    Method #3

    1. Rewrite the integrand:

      2x(x)2+8=2xx+22\frac{2 x}{\left(\sqrt{x}\right)^{2} + \sqrt{8}} = \frac{2 x}{x + 2 \sqrt{2}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      2xx+22dx=2xx+22dx\int \frac{2 x}{x + 2 \sqrt{2}}\, dx = 2 \int \frac{x}{x + 2 \sqrt{2}}\, dx

      1. Rewrite the integrand:

        xx+22=122x+22\frac{x}{x + 2 \sqrt{2}} = 1 - \frac{2 \sqrt{2}}{x + 2 \sqrt{2}}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        1. The integral of a constant times a function is the constant times the integral of the function:

          (22x+22)dx=221x+22dx\int \left(- \frac{2 \sqrt{2}}{x + 2 \sqrt{2}}\right)\, dx = - 2 \sqrt{2} \int \frac{1}{x + 2 \sqrt{2}}\, dx

          1. Let u=x+22u = x + 2 \sqrt{2}.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x+22)\log{\left(x + 2 \sqrt{2} \right)}

          So, the result is: 22log(x+22)- 2 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

        The result is: x22log(x+22)x - 2 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

      So, the result is: 2x42log(x+22)2 x - 4 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}

  2. Add the constant of integration:

    2x42log(x+22)+constant2 x - 4 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}+ \mathrm{constant}


The answer is:

2x42log(x+22)+constant2 x - 4 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |      2*x                          ___    /        ___\
 | -------------- dx = C + 2*x - 4*\/ 2 *log\x + 2*\/ 2 /
 |      2                                                
 |   ___      ___                                        
 | \/ x   + \/ 8                                         
 |                                                       
/                                                        
2x(x)2+8dx=C+2x42log(x+22)\int \frac{2 x}{\left(\sqrt{x}\right)^{2} + \sqrt{8}}\, dx = C + 2 x - 4 \sqrt{2} \log{\left(x + 2 \sqrt{2} \right)}
The graph
2.04.02.22.42.62.83.03.23.43.63.85-10
The answer [src]
        ___    /        ___\       ___    /        ___\
4 - 4*\/ 2 *log\4 + 2*\/ 2 / + 4*\/ 2 *log\2 + 2*\/ 2 /
42log(22+4)+4+42log(2+22)- 4 \sqrt{2} \log{\left(2 \sqrt{2} + 4 \right)} + 4 + 4 \sqrt{2} \log{\left(2 + 2 \sqrt{2} \right)}
=
=
        ___    /        ___\       ___    /        ___\
4 - 4*\/ 2 *log\4 + 2*\/ 2 / + 4*\/ 2 *log\2 + 2*\/ 2 /
42log(22+4)+4+42log(2+22)- 4 \sqrt{2} \log{\left(2 \sqrt{2} + 4 \right)} + 4 + 4 \sqrt{2} \log{\left(2 + 2 \sqrt{2} \right)}
4 - 4*sqrt(2)*log(4 + 2*sqrt(2)) + 4*sqrt(2)*log(2 + 2*sqrt(2))
Numerical answer [src]
2.03948371306291
2.03948371306291

    Use the examples entering the upper and lower limits of integration.