n / | | 2*x | ------ dx | log(x) | / 0
Integral((2*x)/log(x), (x, 0, n))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
EiRule(a=2, b=0, context=exp(2*_u)/_u, symbol=_u)
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | 2*x | ------ dx = C + 2*Ei(2*log(x)) | log(x) | /
2*Ei(2*log(n))
=
2*Ei(2*log(n))
2*Ei(2*log(n))
Use the examples entering the upper and lower limits of integration.