Mister Exam

Integral of 2x/(ln(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  n          
  /          
 |           
 |   2*x     
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{n} \frac{2 x}{\log{\left(x \right)}}\, dx$$
Integral((2*x)/log(x), (x, 0, n))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

        EiRule(a=2, b=0, context=exp(2*_u)/_u, symbol=_u)

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                               
 |  2*x                          
 | ------ dx = C + 2*Ei(2*log(x))
 | log(x)                        
 |                               
/                                
$$\int \frac{2 x}{\log{\left(x \right)}}\, dx = C + 2 \operatorname{Ei}{\left(2 \log{\left(x \right)} \right)}$$
The answer [src]
2*Ei(2*log(n))
$$2 \operatorname{Ei}{\left(2 \log{\left(n \right)} \right)}$$
=
=
2*Ei(2*log(n))
$$2 \operatorname{Ei}{\left(2 \log{\left(n \right)} \right)}$$
2*Ei(2*log(n))

    Use the examples entering the upper and lower limits of integration.