Mister Exam

Other calculators

Integral of 2^x/ln(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     x     
 |    2      
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2^{x}}{\log{\left(x \right)}}\, dx$$
Integral(2^x/log(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                  /         
 |                  |          
 |    x             |    x     
 |   2              |   2      
 | ------ dx = C +  | ------ dx
 | log(x)           | log(x)   
 |                  |          
/                  /           
$$\int \frac{2^{x}}{\log{\left(x \right)}}\, dx = C + \int \frac{2^{x}}{\log{\left(x \right)}}\, dx$$
The answer [src]
  1          
  /          
 |           
 |     x     
 |    2      
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2^{x}}{\log{\left(x \right)}}\, dx$$
=
=
  1          
  /          
 |           
 |     x     
 |    2      
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{2^{x}}{\log{\left(x \right)}}\, dx$$
Integral(2^x/log(x), (x, 0, 1))
Numerical answer [src]
-86.1879649564892
-86.1879649564892

    Use the examples entering the upper and lower limits of integration.