Mister Exam

Integral of 2x³dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3     
 |  2*x *1 dx
 |           
/            
0            
012x31dx\int\limits_{0}^{1} 2 x^{3} \cdot 1\, dx
Integral(2*x^3*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2x31dx=2x3dx\int 2 x^{3} \cdot 1\, dx = 2 \int x^{3}\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    So, the result is: x42\frac{x^{4}}{2}

  2. Add the constant of integration:

    x42+constant\frac{x^{4}}{2}+ \mathrm{constant}


The answer is:

x42+constant\frac{x^{4}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  
 |                  4
 |    3            x 
 | 2*x *1 dx = C + --
 |                 2 
/                    
x42{{x^4}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
1/2
12{{1}\over{2}}
=
=
1/2
12\frac{1}{2}
Numerical answer [src]
0.5
0.5
The graph
Integral of 2x³dx dx

    Use the examples entering the upper and lower limits of integration.