Mister Exam

Integral of 2e^(-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     -2*x   
 |  2*E     dx
 |            
/             
0             
012e2xdx\int\limits_{0}^{1} 2 e^{- 2 x}\, dx
Integral(2*E^(-2*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2e2xdx=2e2xdx\int 2 e^{- 2 x}\, dx = 2 \int e^{- 2 x}\, dx

    1. Let u=2xu = - 2 x.

      Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

      (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2- \frac{e^{u}}{2}

      Now substitute uu back in:

      e2x2- \frac{e^{- 2 x}}{2}

    So, the result is: e2x- e^{- 2 x}

  2. Add the constant of integration:

    e2x+constant- e^{- 2 x}+ \mathrm{constant}


The answer is:

e2x+constant- e^{- 2 x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |    -2*x           -2*x
 | 2*E     dx = C - e    
 |                       
/                        
2e2xdx=Ce2x\int 2 e^{- 2 x}\, dx = C - e^{- 2 x}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
     -2
1 - e  
1e21 - e^{-2}
=
=
     -2
1 - e  
1e21 - e^{-2}
1 - exp(-2)
Numerical answer [src]
0.864664716763387
0.864664716763387
The graph
Integral of 2e^(-2x) dx

    Use the examples entering the upper and lower limits of integration.