Mister Exam

Other calculators


sin(x)/(-2*e^(-2x))

Integral of sin(x)/(-2*e^(-2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   sin(x)    
 |  -------- dx
 |      -2*x   
 |  -2*e       
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\left(-1\right) 2 e^{- 2 x}}\, dx$$
Integral(sin(x)/((-2*exp(-2*x))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                           
 |                    2*x                  2*x
 |  sin(x)           e   *sin(x)   cos(x)*e   
 | -------- dx = C - ----------- + -----------
 |     -2*x               5             10    
 | -2*e                                       
 |                                            
/                                             
$$-{{e^{2\,x}\,\left(2\,\sin x-\cos x\right)}\over{10}}$$
The graph
The answer [src]
        2                  2
  1    e *sin(1)   cos(1)*e 
- -- - --------- + ---------
  10       5           10   
$$-{{{{2\,e^2\,\sin 1-e^2\,\cos 1}\over{5}}+{{1}\over{5}}}\over{2}}$$
=
=
        2                  2
  1    e *sin(1)   cos(1)*e 
- -- - --------- + ---------
  10       5           10   
$$- \frac{e^{2} \sin{\left(1 \right)}}{5} - \frac{1}{10} + \frac{e^{2} \cos{\left(1 \right)}}{10}$$
Numerical answer [src]
-0.944302857629467
-0.944302857629467
The graph
Integral of sin(x)/(-2*e^(-2x)) dx

    Use the examples entering the upper and lower limits of integration.