Mister Exam

Other calculators

Integral of 12*sin(3x-4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  12*sin(3*x - 4) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} 12 \sin{\left(3 x - 4 \right)}\, dx$$
Integral(12*sin(3*x - 4), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 | 12*sin(3*x - 4) dx = C - 4*cos(3*x - 4)
 |                                        
/                                         
$$\int 12 \sin{\left(3 x - 4 \right)}\, dx = C - 4 \cos{\left(3 x - 4 \right)}$$
The graph
The answer [src]
-4*cos(1) + 4*cos(4)
$$4 \cos{\left(4 \right)} - 4 \cos{\left(1 \right)}$$
=
=
-4*cos(1) + 4*cos(4)
$$4 \cos{\left(4 \right)} - 4 \cos{\left(1 \right)}$$
-4*cos(1) + 4*cos(4)
Numerical answer [src]
-4.77578370692701
-4.77578370692701

    Use the examples entering the upper and lower limits of integration.