/ -log(7) \
And|x < oo, ---------------- < x|
\ -log(3) + log(2) /
$$x < \infty \wedge - \frac{\log{\left(7 \right)}}{- \log{\left(3 \right)} + \log{\left(2 \right)}} < x$$
(x < oo)∧(-log(7)/(-log(3) + log(2)) < x)
-log(7)
(----------------, oo)
-log(3) + log(2)
$$x\ in\ \left(- \frac{\log{\left(7 \right)}}{- \log{\left(3 \right)} + \log{\left(2 \right)}}, \infty\right)$$
x in Interval.open(-log(7)/(-log(3) + log(2)), oo)