Mister Exam

Other calculators

3^x>7*2^x inequation

A inequation with variable

The solution

You have entered [src]
 x      x
3  > 7*2 
$$3^{x} > 7 \cdot 2^{x}$$
3^x > 7*2^x
Solving inequality on a graph
Rapid solution [src]
   /            -log(7)         \
And|x < oo, ---------------- < x|
   \        -log(3) + log(2)    /
$$x < \infty \wedge - \frac{\log{\left(7 \right)}}{- \log{\left(3 \right)} + \log{\left(2 \right)}} < x$$
(x < oo)∧(-log(7)/(-log(3) + log(2)) < x)
Rapid solution 2 [src]
     -log(7)          
(----------------, oo)
 -log(3) + log(2)     
$$x\ in\ \left(- \frac{\log{\left(7 \right)}}{- \log{\left(3 \right)} + \log{\left(2 \right)}}, \infty\right)$$
x in Interval.open(-log(7)/(-log(3) + log(2)), oo)