Mister Exam

Other calculators

Integral of 7*2^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |     x   
 |  7*2  dx
 |         
/          
0          
0172xdx\int\limits_{0}^{1} 7 \cdot 2^{x}\, dx
Integral(7*2^x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    72xdx=72xdx\int 7 \cdot 2^{x}\, dx = 7 \int 2^{x}\, dx

    1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      2xdx=2xlog(2)\int 2^{x}\, dx = \frac{2^{x}}{\log{\left(2 \right)}}

    So, the result is: 72xlog(2)\frac{7 \cdot 2^{x}}{\log{\left(2 \right)}}

  2. Add the constant of integration:

    72xlog(2)+constant\frac{7 \cdot 2^{x}}{\log{\left(2 \right)}}+ \mathrm{constant}


The answer is:

72xlog(2)+constant\frac{7 \cdot 2^{x}}{\log{\left(2 \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                   x 
 |    x           7*2  
 | 7*2  dx = C + ------
 |               log(2)
/                      
72xdx=72xlog(2)+C\int 7 \cdot 2^{x}\, dx = \frac{7 \cdot 2^{x}}{\log{\left(2 \right)}} + C
The graph
0.001.000.100.200.300.400.500.600.700.800.90030
The answer [src]
  7   
------
log(2)
7log(2)\frac{7}{\log{\left(2 \right)}}
=
=
  7   
------
log(2)
7log(2)\frac{7}{\log{\left(2 \right)}}
7/log(2)
Numerical answer [src]
10.0988652862227
10.0988652862227

    Use the examples entering the upper and lower limits of integration.