Mister Exam

tgx>2 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) > 2
tan(x)>2\tan{\left(x \right)} > 2
tan(x) > 2
Detail solution
Given the inequality:
tan(x)>2\tan{\left(x \right)} > 2
To solve this inequality, we must first solve the corresponding equation:
tan(x)=2\tan{\left(x \right)} = 2
Solve:
Given the equation
tan(x)=2\tan{\left(x \right)} = 2
- this is the simplest trigonometric equation
This equation is transformed to
x=πn+atan(2)x = \pi n + \operatorname{atan}{\left(2 \right)}
Or
x=πn+atan(2)x = \pi n + \operatorname{atan}{\left(2 \right)}
, where n - is a integer
x1=πn+atan(2)x_{1} = \pi n + \operatorname{atan}{\left(2 \right)}
x1=πn+atan(2)x_{1} = \pi n + \operatorname{atan}{\left(2 \right)}
This roots
x1=πn+atan(2)x_{1} = \pi n + \operatorname{atan}{\left(2 \right)}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(πn+atan(2))+110\left(\pi n + \operatorname{atan}{\left(2 \right)}\right) + - \frac{1}{10}
=
πn110+atan(2)\pi n - \frac{1}{10} + \operatorname{atan}{\left(2 \right)}
substitute to the expression
tan(x)>2\tan{\left(x \right)} > 2
tan(πn110+atan(2))>2\tan{\left(\pi n - \frac{1}{10} + \operatorname{atan}{\left(2 \right)} \right)} > 2
tan(-1/10 + pi*n + atan(2)) > 2

Then
x<πn+atan(2)x < \pi n + \operatorname{atan}{\left(2 \right)}
no execute
the solution of our inequality is:
x>πn+atan(2)x > \pi n + \operatorname{atan}{\left(2 \right)}
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
0-80-60-40-2020406080-50005000
Rapid solution [src]
   /    pi             \
And|x < --, atan(2) < x|
   \    2              /
x<π2atan(2)<xx < \frac{\pi}{2} \wedge \operatorname{atan}{\left(2 \right)} < x
(atan(2) < x)∧(x < pi/2)
Rapid solution 2 [src]
          pi 
(atan(2), --)
          2  
x in (atan(2),π2)x\ in\ \left(\operatorname{atan}{\left(2 \right)}, \frac{\pi}{2}\right)
x in Interval.open(atan(2), pi/2)