Mister Exam

ctg>1 inequation

A inequation with variable

The solution

You have entered [src]
cot(x) > 1
cot(x)>1\cot{\left(x \right)} > 1
cot(x) > 1
Detail solution
Given the inequality:
cot(x)>1\cot{\left(x \right)} > 1
To solve this inequality, we must first solve the corresponding equation:
cot(x)=1\cot{\left(x \right)} = 1
Solve:
Given the equation
cot(x)=1\cot{\left(x \right)} = 1
transform
cot(x)1=0\cot{\left(x \right)} - 1 = 0
cot(x)1=0\cot{\left(x \right)} - 1 = 0
Do replacement
w=cot(x)w = \cot{\left(x \right)}
Move free summands (without w)
from left part to right part, we given:
w=1w = 1
We get the answer: w = 1
do backward replacement
cot(x)=w\cot{\left(x \right)} = w
substitute w:
x1=π4x_{1} = \frac{\pi}{4}
x1=π4x_{1} = \frac{\pi}{4}
This roots
x1=π4x_{1} = \frac{\pi}{4}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+π4- \frac{1}{10} + \frac{\pi}{4}
=
110+π4- \frac{1}{10} + \frac{\pi}{4}
substitute to the expression
cot(x)>1\cot{\left(x \right)} > 1
cot(110+π4)>1\cot{\left(- \frac{1}{10} + \frac{\pi}{4} \right)} > 1
   /1    pi\    
tan|-- + --| > 1
   \10   4 /    

the solution of our inequality is:
x<π4x < \frac{\pi}{4}
 _____          
      \    
-------ο-------
       x1
Rapid solution 2 [src]
    pi 
(0, --)
    4  
x in (0,π4)x\ in\ \left(0, \frac{\pi}{4}\right)
x in Interval.open(0, pi/4)
Rapid solution [src]
   /           pi\
And|0 < x, x < --|
   \           4 /
0<xx<π40 < x \wedge x < \frac{\pi}{4}
(0 < x)∧(x < pi/4)