Mister Exam

Other calculators

ctg(x)<=-3/3 inequation

A inequation with variable

The solution

You have entered [src]
cot(x) <= -1
cot(x)1\cot{\left(x \right)} \leq -1
cot(x) <= -1
Detail solution
Given the inequality:
cot(x)1\cot{\left(x \right)} \leq -1
To solve this inequality, we must first solve the corresponding equation:
cot(x)=1\cot{\left(x \right)} = -1
Solve:
Given the equation
cot(x)=1\cot{\left(x \right)} = -1
transform
cot(x)+1=0\cot{\left(x \right)} + 1 = 0
cot(x)+1=0\cot{\left(x \right)} + 1 = 0
Do replacement
w=cot(x)w = \cot{\left(x \right)}
Move free summands (without w)
from left part to right part, we given:
w=1w = -1
We get the answer: w = -1
do backward replacement
cot(x)=w\cot{\left(x \right)} = w
substitute w:
x1=π4x_{1} = - \frac{\pi}{4}
x1=π4x_{1} = - \frac{\pi}{4}
This roots
x1=π4x_{1} = - \frac{\pi}{4}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
π4110- \frac{\pi}{4} - \frac{1}{10}
=
π4110- \frac{\pi}{4} - \frac{1}{10}
substitute to the expression
cot(x)1\cot{\left(x \right)} \leq -1
cot(π4110)1\cot{\left(- \frac{\pi}{4} - \frac{1}{10} \right)} \leq -1
    /1    pi\      
-cot|-- + --| <= -1
    \10   4 /      

but
    /1    pi\      
-cot|-- + --| >= -1
    \10   4 /      

Then
xπ4x \leq - \frac{\pi}{4}
no execute
the solution of our inequality is:
xπ4x \geq - \frac{\pi}{4}
         _____  
        /
-------•-------
       x1
Rapid solution [src]
   /3*pi             \
And|---- <= x, x < pi|
   \ 4               /
3π4xx<π\frac{3 \pi}{4} \leq x \wedge x < \pi
(x < pi)∧(3*pi/4 <= x)
Rapid solution 2 [src]
 3*pi     
[----, pi)
  4       
x in [3π4,π)x\ in\ \left[\frac{3 \pi}{4}, \pi\right)
x in Interval.Ropen(3*pi/4, pi)