Mister Exam

Other calculators

tgx>100 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) > 100
$$\tan{\left(x \right)} > 100$$
tan(x) > 100
Detail solution
Given the inequality:
$$\tan{\left(x \right)} > 100$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = 100$$
Solve:
Given the equation
$$\tan{\left(x \right)} = 100$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(100 \right)}$$
Or
$$x = \pi n + \operatorname{atan}{\left(100 \right)}$$
, where n - is a integer
$$x_{1} = \pi n + \operatorname{atan}{\left(100 \right)}$$
$$x_{1} = \pi n + \operatorname{atan}{\left(100 \right)}$$
This roots
$$x_{1} = \pi n + \operatorname{atan}{\left(100 \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \operatorname{atan}{\left(100 \right)}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \operatorname{atan}{\left(100 \right)}$$
substitute to the expression
$$\tan{\left(x \right)} > 100$$
$$\tan{\left(\pi n - \frac{1}{10} + \operatorname{atan}{\left(100 \right)} \right)} > 100$$
tan(-1/10 + pi*n + atan(100)) > 100

Then
$$x < \pi n + \operatorname{atan}{\left(100 \right)}$$
no execute
the solution of our inequality is:
$$x > \pi n + \operatorname{atan}{\left(100 \right)}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
   /    pi               \
And|x < --, atan(100) < x|
   \    2                /
$$x < \frac{\pi}{2} \wedge \operatorname{atan}{\left(100 \right)} < x$$
(atan(100) < x)∧(x < pi/2)
Rapid solution 2 [src]
            pi 
(atan(100), --)
            2  
$$x\ in\ \left(\operatorname{atan}{\left(100 \right)}, \frac{\pi}{2}\right)$$
x in Interval.open(atan(100), pi/2)