Mister Exam

Other calculators


tg(x)+tg(2x)>=0

tg(x)+tg(2x)>=0 inequation

A inequation with variable

The solution

You have entered [src]
tan(x) + tan(2*x) >= 0
$$\tan{\left(x \right)} + \tan{\left(2 x \right)} \geq 0$$
tan(x) + tan(2*x) >= 0
Detail solution
Given the inequality:
$$\tan{\left(x \right)} + \tan{\left(2 x \right)} \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} + \tan{\left(2 x \right)} = 0$$
Solve:
$$x_{1} = 0$$
$$x_{2} = - \frac{2 \pi}{3}$$
$$x_{3} = - \frac{\pi}{3}$$
$$x_{4} = \frac{\pi}{3}$$
$$x_{5} = \frac{2 \pi}{3}$$
$$x_{6} = \pi$$
$$x_{1} = 0$$
$$x_{2} = - \frac{2 \pi}{3}$$
$$x_{3} = - \frac{\pi}{3}$$
$$x_{4} = \frac{\pi}{3}$$
$$x_{5} = \frac{2 \pi}{3}$$
$$x_{6} = \pi$$
This roots
$$x_{2} = - \frac{2 \pi}{3}$$
$$x_{3} = - \frac{\pi}{3}$$
$$x_{1} = 0$$
$$x_{4} = \frac{\pi}{3}$$
$$x_{5} = \frac{2 \pi}{3}$$
$$x_{6} = \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{2 \pi}{3} - \frac{1}{10}$$
=
$$- \frac{2 \pi}{3} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(x \right)} + \tan{\left(2 x \right)} \geq 0$$
$$\tan{\left(2 \left(- \frac{2 \pi}{3} - \frac{1}{10}\right) \right)} + \tan{\left(- \frac{2 \pi}{3} - \frac{1}{10} \right)} \geq 0$$
     /1   pi\      /1    pi\     
- tan|- + --| + cot|-- + --| >= 0
     \5   3 /      \10   6 /     

but
     /1   pi\      /1    pi\    
- tan|- + --| + cot|-- + --| < 0
     \5   3 /      \10   6 /    

Then
$$x \leq - \frac{2 \pi}{3}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \frac{2 \pi}{3} \wedge x \leq - \frac{\pi}{3}$$
         _____           _____           _____  
        /     \         /     \         /     \  
-------•-------•-------•-------•-------•-------•-------
       x_2      x_3      x_1      x_4      x_5      x_6

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq - \frac{2 \pi}{3} \wedge x \leq - \frac{\pi}{3}$$
$$x \geq 0 \wedge x \leq \frac{\pi}{3}$$
$$x \geq \frac{2 \pi}{3} \wedge x \leq \pi$$
Solving inequality on a graph
Rapid solution [src]
  /   /            pi\     /pi           pi\     /2*pi           3*pi\\
Or|And|0 <= x, x < --|, And|-- <= x, x < --|, And|---- <= x, x < ----||
  \   \            4 /     \3            2 /     \ 3              4  //
$$\left(0 \leq x \wedge x < \frac{\pi}{4}\right) \vee \left(\frac{\pi}{3} \leq x \wedge x < \frac{\pi}{2}\right) \vee \left(\frac{2 \pi}{3} \leq x \wedge x < \frac{3 \pi}{4}\right)$$
((0 <= x)∧(x < pi/4))∨((pi/3 <= x)∧(x < pi/2))∨((2*pi/3 <= x)∧(x < 3*pi/4))
Rapid solution 2 [src]
    pi     pi  pi     2*pi  3*pi 
[0, --) U [--, --) U [----, ----)
    4      3   2       3     4   
$$x\ in\ \left[0, \frac{\pi}{4}\right) \cup \left[\frac{\pi}{3}, \frac{\pi}{2}\right) \cup \left[\frac{2 \pi}{3}, \frac{3 \pi}{4}\right)$$
x in Union(Interval.Ropen(0, pi/4), Interval.Ropen(pi/3, pi/2), Interval.Ropen(2*pi/3, 3*pi/4))
The graph
tg(x)+tg(2x)>=0 inequation