Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2*asin(x)+asin(2*x))/x^3
Limit of -cos(x)+5*x
Limit of (3+2*n)/|-1+2*n|
Limit of (1-cos(4*x))/(1-cos(8*x))
Identical expressions
- one / four
minus 1 divide by 4
minus one divide by four
-1 divide by 4
Similar expressions
1/4
Limit of the function
/
-1/4
Limit of the function -1/4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-1/4) x->oo
lim
x
→
∞
−
1
4
\lim_{x \to \infty} - \frac{1}{4}
x
→
∞
lim
−
4
1
Limit(-1/4, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
-1/4
−
1
4
- \frac{1}{4}
−
4
1
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
−
1
4
=
−
1
4
\lim_{x \to \infty} - \frac{1}{4} = - \frac{1}{4}
x
→
∞
lim
−
4
1
=
−
4
1
lim
x
→
0
−
−
1
4
=
−
1
4
\lim_{x \to 0^-} - \frac{1}{4} = - \frac{1}{4}
x
→
0
−
lim
−
4
1
=
−
4
1
More at x→0 from the left
lim
x
→
0
+
−
1
4
=
−
1
4
\lim_{x \to 0^+} - \frac{1}{4} = - \frac{1}{4}
x
→
0
+
lim
−
4
1
=
−
4
1
More at x→0 from the right
lim
x
→
1
−
−
1
4
=
−
1
4
\lim_{x \to 1^-} - \frac{1}{4} = - \frac{1}{4}
x
→
1
−
lim
−
4
1
=
−
4
1
More at x→1 from the left
lim
x
→
1
+
−
1
4
=
−
1
4
\lim_{x \to 1^+} - \frac{1}{4} = - \frac{1}{4}
x
→
1
+
lim
−
4
1
=
−
4
1
More at x→1 from the right
lim
x
→
−
∞
−
1
4
=
−
1
4
\lim_{x \to -\infty} - \frac{1}{4} = - \frac{1}{4}
x
→
−
∞
lim
−
4
1
=
−
4
1
More at x→-oo