Mister Exam

sint≤1/2 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) <= 1/2
sin(t)12\sin{\left(t \right)} \leq \frac{1}{2}
sin(t) <= 1/2
Detail solution
Given the inequality:
sin(t)12\sin{\left(t \right)} \leq \frac{1}{2}
To solve this inequality, we must first solve the corresponding equation:
sin(t)=12\sin{\left(t \right)} = \frac{1}{2}
Solve:
Given the equation
sin(t)=12\sin{\left(t \right)} = \frac{1}{2}
transform
sin(t)12=0\sin{\left(t \right)} - \frac{1}{2} = 0
sin(t)12=0\sin{\left(t \right)} - \frac{1}{2} = 0
Do replacement
w=sin(t)w = \sin{\left(t \right)}
Move free summands (without w)
from left part to right part, we given:
w=12w = \frac{1}{2}
We get the answer: w = 1/2
do backward replacement
sin(t)=w\sin{\left(t \right)} = w
substitute w:
x1=74.8746249105567x_{1} = -74.8746249105567
x2=37.1755130674792x_{2} = -37.1755130674792
x3=75.9218224617533x_{3} = 75.9218224617533
x4=78.0162175641465x_{4} = 78.0162175641465
x5=60.2138591938044x_{5} = -60.2138591938044
x6=88.4881930761125x_{6} = 88.4881930761125
x7=41.3643032722656x_{7} = -41.3643032722656
x8=52.8834763354282x_{8} = 52.8834763354282
x9=50.789081233035x_{9} = 50.789081233035
x10=2.61799387799149x_{10} = 2.61799387799149
x11=62.3082542961976x_{11} = -62.3082542961976
x12=31.9395253114962x_{12} = 31.9395253114962
x13=57.0722665402146x_{13} = 57.0722665402146
x14=66.497044500984x_{14} = -66.497044500984
x15=17438.4572213013x_{15} = 17438.4572213013
x16=24.60914245312x_{16} = -24.60914245312
x17=49.7418836818384x_{17} = -49.7418836818384
x18=8.90117918517108x_{18} = 8.90117918517108
x19=12.0427718387609x_{19} = -12.0427718387609
x20=16.2315620435473x_{20} = -16.2315620435473
x21=18.3259571459405x_{21} = -18.3259571459405
x22=87.4409955249159x_{22} = -87.4409955249159
x23=25.6563400043166x_{23} = 25.6563400043166
x24=2650.98060085419x_{24} = -2650.98060085419
x25=134.564885328763x_{25} = 134.564885328763
x26=28.7979326579064x_{26} = -28.7979326579064
x27=34.0339204138894x_{27} = 34.0339204138894
x28=46.6002910282486x_{28} = 46.6002910282486
x29=94.7713783832921x_{29} = 94.7713783832921
x30=0.523598775598299x_{30} = 0.523598775598299
x31=93.7241808320955x_{31} = -93.7241808320955
x32=138.753675533549x_{32} = 138.753675533549
x33=40.317105721069x_{33} = 40.317105721069
x34=68.5914396033772x_{34} = -68.5914396033772
x35=53.9306738866248x_{35} = -53.9306738866248
x36=47.6474885794452x_{36} = -47.6474885794452
x37=627.79493194236x_{37} = -627.79493194236
x38=90.5825881785057x_{38} = 90.5825881785057
x39=56.025068989018x_{39} = -56.025068989018
x40=84.2994028713261x_{40} = 84.2994028713261
x41=101.054563690472x_{41} = 101.054563690472
x42=100.007366139275x_{42} = -100.007366139275
x43=85.3466004225227x_{43} = -85.3466004225227
x44=13.0899693899575x_{44} = 13.0899693899575
x45=81.1578102177363x_{45} = -81.1578102177363
x46=27.7507351067098x_{46} = 27.7507351067098
x47=91.6297857297023x_{47} = -91.6297857297023
x48=4454.25478401473x_{48} = -4454.25478401473
x49=21.4675497995303x_{49} = 21.4675497995303
x50=3.66519142918809x_{50} = -3.66519142918809
x51=30.8923277602996x_{51} = -30.8923277602996
x52=82.2050077689329x_{52} = 82.2050077689329
x53=65.4498469497874x_{53} = 65.4498469497874
x54=69.6386371545737x_{54} = 69.6386371545737
x55=97.9129710368819x_{55} = -97.9129710368819
x56=72.7802298081635x_{56} = -72.7802298081635
x57=15.1843644923507x_{57} = 15.1843644923507
x58=19.3731546971371x_{58} = 19.3731546971371
x59=38.2227106186758x_{59} = 38.2227106186758
x60=35.081117965086x_{60} = -35.081117965086
x61=44.5058959258554x_{61} = 44.5058959258554
x62=9.94837673636768x_{62} = -9.94837673636768
x63=79.0634151153431x_{63} = -79.0634151153431
x64=43.4586983746588x_{64} = -43.4586983746588
x65=96.8657734856853x_{65} = 96.8657734856853
x66=5.75958653158129x_{66} = -5.75958653158129
x67=59.1666616426078x_{67} = 59.1666616426078
x68=71.733032256967x_{68} = 71.733032256967
x69=22.5147473507269x_{69} = -22.5147473507269
x70=6.80678408277789x_{70} = 6.80678408277789
x71=63.3554518473942x_{71} = 63.3554518473942
x1=74.8746249105567x_{1} = -74.8746249105567
x2=37.1755130674792x_{2} = -37.1755130674792
x3=75.9218224617533x_{3} = 75.9218224617533
x4=78.0162175641465x_{4} = 78.0162175641465
x5=60.2138591938044x_{5} = -60.2138591938044
x6=88.4881930761125x_{6} = 88.4881930761125
x7=41.3643032722656x_{7} = -41.3643032722656
x8=52.8834763354282x_{8} = 52.8834763354282
x9=50.789081233035x_{9} = 50.789081233035
x10=2.61799387799149x_{10} = 2.61799387799149
x11=62.3082542961976x_{11} = -62.3082542961976
x12=31.9395253114962x_{12} = 31.9395253114962
x13=57.0722665402146x_{13} = 57.0722665402146
x14=66.497044500984x_{14} = -66.497044500984
x15=17438.4572213013x_{15} = 17438.4572213013
x16=24.60914245312x_{16} = -24.60914245312
x17=49.7418836818384x_{17} = -49.7418836818384
x18=8.90117918517108x_{18} = 8.90117918517108
x19=12.0427718387609x_{19} = -12.0427718387609
x20=16.2315620435473x_{20} = -16.2315620435473
x21=18.3259571459405x_{21} = -18.3259571459405
x22=87.4409955249159x_{22} = -87.4409955249159
x23=25.6563400043166x_{23} = 25.6563400043166
x24=2650.98060085419x_{24} = -2650.98060085419
x25=134.564885328763x_{25} = 134.564885328763
x26=28.7979326579064x_{26} = -28.7979326579064
x27=34.0339204138894x_{27} = 34.0339204138894
x28=46.6002910282486x_{28} = 46.6002910282486
x29=94.7713783832921x_{29} = 94.7713783832921
x30=0.523598775598299x_{30} = 0.523598775598299
x31=93.7241808320955x_{31} = -93.7241808320955
x32=138.753675533549x_{32} = 138.753675533549
x33=40.317105721069x_{33} = 40.317105721069
x34=68.5914396033772x_{34} = -68.5914396033772
x35=53.9306738866248x_{35} = -53.9306738866248
x36=47.6474885794452x_{36} = -47.6474885794452
x37=627.79493194236x_{37} = -627.79493194236
x38=90.5825881785057x_{38} = 90.5825881785057
x39=56.025068989018x_{39} = -56.025068989018
x40=84.2994028713261x_{40} = 84.2994028713261
x41=101.054563690472x_{41} = 101.054563690472
x42=100.007366139275x_{42} = -100.007366139275
x43=85.3466004225227x_{43} = -85.3466004225227
x44=13.0899693899575x_{44} = 13.0899693899575
x45=81.1578102177363x_{45} = -81.1578102177363
x46=27.7507351067098x_{46} = 27.7507351067098
x47=91.6297857297023x_{47} = -91.6297857297023
x48=4454.25478401473x_{48} = -4454.25478401473
x49=21.4675497995303x_{49} = 21.4675497995303
x50=3.66519142918809x_{50} = -3.66519142918809
x51=30.8923277602996x_{51} = -30.8923277602996
x52=82.2050077689329x_{52} = 82.2050077689329
x53=65.4498469497874x_{53} = 65.4498469497874
x54=69.6386371545737x_{54} = 69.6386371545737
x55=97.9129710368819x_{55} = -97.9129710368819
x56=72.7802298081635x_{56} = -72.7802298081635
x57=15.1843644923507x_{57} = 15.1843644923507
x58=19.3731546971371x_{58} = 19.3731546971371
x59=38.2227106186758x_{59} = 38.2227106186758
x60=35.081117965086x_{60} = -35.081117965086
x61=44.5058959258554x_{61} = 44.5058959258554
x62=9.94837673636768x_{62} = -9.94837673636768
x63=79.0634151153431x_{63} = -79.0634151153431
x64=43.4586983746588x_{64} = -43.4586983746588
x65=96.8657734856853x_{65} = 96.8657734856853
x66=5.75958653158129x_{66} = -5.75958653158129
x67=59.1666616426078x_{67} = 59.1666616426078
x68=71.733032256967x_{68} = 71.733032256967
x69=22.5147473507269x_{69} = -22.5147473507269
x70=6.80678408277789x_{70} = 6.80678408277789
x71=63.3554518473942x_{71} = 63.3554518473942
This roots
x48=4454.25478401473x_{48} = -4454.25478401473
x24=2650.98060085419x_{24} = -2650.98060085419
x37=627.79493194236x_{37} = -627.79493194236
x42=100.007366139275x_{42} = -100.007366139275
x55=97.9129710368819x_{55} = -97.9129710368819
x31=93.7241808320955x_{31} = -93.7241808320955
x47=91.6297857297023x_{47} = -91.6297857297023
x22=87.4409955249159x_{22} = -87.4409955249159
x43=85.3466004225227x_{43} = -85.3466004225227
x45=81.1578102177363x_{45} = -81.1578102177363
x63=79.0634151153431x_{63} = -79.0634151153431
x1=74.8746249105567x_{1} = -74.8746249105567
x56=72.7802298081635x_{56} = -72.7802298081635
x34=68.5914396033772x_{34} = -68.5914396033772
x14=66.497044500984x_{14} = -66.497044500984
x11=62.3082542961976x_{11} = -62.3082542961976
x5=60.2138591938044x_{5} = -60.2138591938044
x39=56.025068989018x_{39} = -56.025068989018
x35=53.9306738866248x_{35} = -53.9306738866248
x17=49.7418836818384x_{17} = -49.7418836818384
x36=47.6474885794452x_{36} = -47.6474885794452
x64=43.4586983746588x_{64} = -43.4586983746588
x7=41.3643032722656x_{7} = -41.3643032722656
x2=37.1755130674792x_{2} = -37.1755130674792
x60=35.081117965086x_{60} = -35.081117965086
x51=30.8923277602996x_{51} = -30.8923277602996
x26=28.7979326579064x_{26} = -28.7979326579064
x16=24.60914245312x_{16} = -24.60914245312
x69=22.5147473507269x_{69} = -22.5147473507269
x21=18.3259571459405x_{21} = -18.3259571459405
x20=16.2315620435473x_{20} = -16.2315620435473
x19=12.0427718387609x_{19} = -12.0427718387609
x62=9.94837673636768x_{62} = -9.94837673636768
x66=5.75958653158129x_{66} = -5.75958653158129
x50=3.66519142918809x_{50} = -3.66519142918809
x30=0.523598775598299x_{30} = 0.523598775598299
x10=2.61799387799149x_{10} = 2.61799387799149
x70=6.80678408277789x_{70} = 6.80678408277789
x18=8.90117918517108x_{18} = 8.90117918517108
x44=13.0899693899575x_{44} = 13.0899693899575
x57=15.1843644923507x_{57} = 15.1843644923507
x58=19.3731546971371x_{58} = 19.3731546971371
x49=21.4675497995303x_{49} = 21.4675497995303
x23=25.6563400043166x_{23} = 25.6563400043166
x46=27.7507351067098x_{46} = 27.7507351067098
x12=31.9395253114962x_{12} = 31.9395253114962
x27=34.0339204138894x_{27} = 34.0339204138894
x59=38.2227106186758x_{59} = 38.2227106186758
x33=40.317105721069x_{33} = 40.317105721069
x61=44.5058959258554x_{61} = 44.5058959258554
x28=46.6002910282486x_{28} = 46.6002910282486
x9=50.789081233035x_{9} = 50.789081233035
x8=52.8834763354282x_{8} = 52.8834763354282
x13=57.0722665402146x_{13} = 57.0722665402146
x67=59.1666616426078x_{67} = 59.1666616426078
x71=63.3554518473942x_{71} = 63.3554518473942
x53=65.4498469497874x_{53} = 65.4498469497874
x54=69.6386371545737x_{54} = 69.6386371545737
x68=71.733032256967x_{68} = 71.733032256967
x3=75.9218224617533x_{3} = 75.9218224617533
x4=78.0162175641465x_{4} = 78.0162175641465
x52=82.2050077689329x_{52} = 82.2050077689329
x40=84.2994028713261x_{40} = 84.2994028713261
x6=88.4881930761125x_{6} = 88.4881930761125
x38=90.5825881785057x_{38} = 90.5825881785057
x29=94.7713783832921x_{29} = 94.7713783832921
x65=96.8657734856853x_{65} = 96.8657734856853
x41=101.054563690472x_{41} = 101.054563690472
x25=134.564885328763x_{25} = 134.564885328763
x32=138.753675533549x_{32} = 138.753675533549
x15=17438.4572213013x_{15} = 17438.4572213013
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x48x_{0} \leq x_{48}
For example, let's take the point
x0=x48110x_{0} = x_{48} - \frac{1}{10}
=
4454.25478401473110-4454.25478401473 - \frac{1}{10}
=
4454.35478401473-4454.35478401473
substitute to the expression
sin(t)12\sin{\left(t \right)} \leq \frac{1}{2}
sin(t)12\sin{\left(t \right)} \leq \frac{1}{2}
sin(t) <= 1/2

Then
x4454.25478401473x \leq -4454.25478401473
no execute
one of the solutions of our inequality is:
x4454.25478401473x2650.98060085419x \geq -4454.25478401473 \wedge x \leq -2650.98060085419
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
       x_48      x_24      x_37      x_42      x_55      x_31      x_47      x_22      x_43      x_45      x_63      x_1      x_56      x_34      x_14      x_11      x_5      x_39      x_35      x_17      x_36      x_64      x_7      x_2      x_60      x_51      x_26      x_16      x_69      x_21      x_20      x_19      x_62      x_66      x_50      x_30      x_10      x_70      x_18      x_44      x_57      x_58      x_49      x_23      x_46      x_12      x_27      x_59      x_33      x_61      x_28      x_9      x_8      x_13      x_67      x_71      x_53      x_54      x_68      x_3      x_4      x_52      x_40      x_6      x_38      x_29      x_65      x_41      x_25      x_32      x_15

Other solutions will get with the changeover to the next point
etc.
The answer:
x4454.25478401473x2650.98060085419x \geq -4454.25478401473 \wedge x \leq -2650.98060085419
x627.79493194236x100.007366139275x \geq -627.79493194236 \wedge x \leq -100.007366139275
x97.9129710368819x93.7241808320955x \geq -97.9129710368819 \wedge x \leq -93.7241808320955
x91.6297857297023x87.4409955249159x \geq -91.6297857297023 \wedge x \leq -87.4409955249159
x85.3466004225227x81.1578102177363x \geq -85.3466004225227 \wedge x \leq -81.1578102177363
x79.0634151153431x74.8746249105567x \geq -79.0634151153431 \wedge x \leq -74.8746249105567
x72.7802298081635x68.5914396033772x \geq -72.7802298081635 \wedge x \leq -68.5914396033772
x66.497044500984x62.3082542961976x \geq -66.497044500984 \wedge x \leq -62.3082542961976
x60.2138591938044x56.025068989018x \geq -60.2138591938044 \wedge x \leq -56.025068989018
x53.9306738866248x49.7418836818384x \geq -53.9306738866248 \wedge x \leq -49.7418836818384
x47.6474885794452x43.4586983746588x \geq -47.6474885794452 \wedge x \leq -43.4586983746588
x41.3643032722656x37.1755130674792x \geq -41.3643032722656 \wedge x \leq -37.1755130674792
x35.081117965086x30.8923277602996x \geq -35.081117965086 \wedge x \leq -30.8923277602996
x28.7979326579064x24.60914245312x \geq -28.7979326579064 \wedge x \leq -24.60914245312
x22.5147473507269x18.3259571459405x \geq -22.5147473507269 \wedge x \leq -18.3259571459405
x16.2315620435473x12.0427718387609x \geq -16.2315620435473 \wedge x \leq -12.0427718387609
x9.94837673636768x5.75958653158129x \geq -9.94837673636768 \wedge x \leq -5.75958653158129
x3.66519142918809x0.523598775598299x \geq -3.66519142918809 \wedge x \leq 0.523598775598299
x2.61799387799149x6.80678408277789x \geq 2.61799387799149 \wedge x \leq 6.80678408277789
x8.90117918517108x13.0899693899575x \geq 8.90117918517108 \wedge x \leq 13.0899693899575
x15.1843644923507x19.3731546971371x \geq 15.1843644923507 \wedge x \leq 19.3731546971371
x21.4675497995303x25.6563400043166x \geq 21.4675497995303 \wedge x \leq 25.6563400043166
x27.7507351067098x31.9395253114962x \geq 27.7507351067098 \wedge x \leq 31.9395253114962
x34.0339204138894x38.2227106186758x \geq 34.0339204138894 \wedge x \leq 38.2227106186758
x40.317105721069x44.5058959258554x \geq 40.317105721069 \wedge x \leq 44.5058959258554
x46.6002910282486x50.789081233035x \geq 46.6002910282486 \wedge x \leq 50.789081233035
x52.8834763354282x57.0722665402146x \geq 52.8834763354282 \wedge x \leq 57.0722665402146
x59.1666616426078x63.3554518473942x \geq 59.1666616426078 \wedge x \leq 63.3554518473942
x65.4498469497874x69.6386371545737x \geq 65.4498469497874 \wedge x \leq 69.6386371545737
x71.733032256967x75.9218224617533x \geq 71.733032256967 \wedge x \leq 75.9218224617533
x78.0162175641465x82.2050077689329x \geq 78.0162175641465 \wedge x \leq 82.2050077689329
x84.2994028713261x88.4881930761125x \geq 84.2994028713261 \wedge x \leq 88.4881930761125
x90.5825881785057x94.7713783832921x \geq 90.5825881785057 \wedge x \leq 94.7713783832921
x96.8657734856853x101.054563690472x \geq 96.8657734856853 \wedge x \leq 101.054563690472
x134.564885328763x138.753675533549x \geq 134.564885328763 \wedge x \leq 138.753675533549
x17438.4572213013x \geq 17438.4572213013
Rapid solution [src]
  /   /             pi\     /5*pi               \\
Or|And|0 <= t, t <= --|, And|---- <= t, t < 2*pi||
  \   \             6 /     \ 6                 //
(0ttπ6)(5π6tt<2π)\left(0 \leq t \wedge t \leq \frac{\pi}{6}\right) \vee \left(\frac{5 \pi}{6} \leq t \wedge t < 2 \pi\right)
((0 <= t)∧(t <= pi/6))∨((5*pi/6 <= t)∧(t < 2*pi))
Rapid solution 2 [src]
    pi     5*pi       
[0, --] U [----, 2*pi)
    6       6         
x in [0,π6][5π6,2π)x\ in\ \left[0, \frac{\pi}{6}\right] \cup \left[\frac{5 \pi}{6}, 2 \pi\right)
x in Union(Interval(0, pi/6), Interval.Ropen(5*pi/6, 2*pi))