Mister Exam

Other calculators

sin(4*x+pi/5)<(-sqrt(3))/2 inequation

A inequation with variable

The solution

You have entered [src]
                   ___ 
   /      pi\   -\/ 3  
sin|4*x + --| < -------
   \      5 /      2   
$$\sin{\left(4 x + \frac{\pi}{5} \right)} < \frac{\left(-1\right) \sqrt{3}}{2}$$
sin(4*x + pi/5) < (-sqrt(3))/2
Detail solution
Given the inequality:
$$\sin{\left(4 x + \frac{\pi}{5} \right)} < \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(4 x + \frac{\pi}{5} \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(4 x + \frac{\pi}{5} \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$4 x + \frac{\pi}{5} = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$4 x + \frac{\pi}{5} = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$4 x + \frac{\pi}{5} = 2 \pi n - \frac{\pi}{3}$$
$$4 x + \frac{\pi}{5} = 2 \pi n + \frac{4 \pi}{3}$$
, where n - is a integer
Move
$$\frac{\pi}{5}$$
to right part of the equation
with the opposite sign, in total:
$$4 x = 2 \pi n - \frac{8 \pi}{15}$$
$$4 x = 2 \pi n + \frac{17 \pi}{15}$$
Divide both parts of the equation by
$$4$$
$$x_{1} = \frac{\pi n}{2} - \frac{2 \pi}{15}$$
$$x_{2} = \frac{\pi n}{2} + \frac{17 \pi}{60}$$
$$x_{1} = \frac{\pi n}{2} - \frac{2 \pi}{15}$$
$$x_{2} = \frac{\pi n}{2} + \frac{17 \pi}{60}$$
This roots
$$x_{1} = \frac{\pi n}{2} - \frac{2 \pi}{15}$$
$$x_{2} = \frac{\pi n}{2} + \frac{17 \pi}{60}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{2} - \frac{2 \pi}{15}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{2} - \frac{2 \pi}{15} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(4 x + \frac{\pi}{5} \right)} < \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\sin{\left(4 \left(\frac{\pi n}{2} - \frac{2 \pi}{15} - \frac{1}{10}\right) + \frac{\pi}{5} \right)} < \frac{\left(-1\right) \sqrt{3}}{2}$$
                           ___ 
    /2   pi         \   -\/ 3  
-sin|- + -- - 2*pi*n| < -------
    \5   3          /      2   
                        

one of the solutions of our inequality is:
$$x < \frac{\pi n}{2} - \frac{2 \pi}{15}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < \frac{\pi n}{2} - \frac{2 \pi}{15}$$
$$x > \frac{\pi n}{2} + \frac{17 \pi}{60}$$
Solving inequality on a graph
Rapid solution [src]
   /             /                                                                     ___________           \           /                                                                   ___________           \    \
   |             |                        ___                                  ____   /       ___            |           |                      ___                                  ____   /       ___            |    |
   |             |                    2*\/ 5                                 \/ 10 *\/  3 - \/ 5             |           |                  2*\/ 5                                 \/ 10 *\/  3 - \/ 5             |    |
   |         atan|- ------------------------------------------- + -------------------------------------------|       atan|------------------------------------------- + -------------------------------------------|    |
   |             |                                _____________                                 _____________|           |                              _____________                                 _____________|    |
   |             |    ____       ___       ___   /         ___      ____       ___       ___   /         ___ |           |  ____       ___       ___   /         ___      ____       ___       ___   /         ___ |    |
   |    pi       \  \/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5     \/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5  /  pi       \\/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5     \/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5  /    |
And|x < -- - -------------------------------------------------------------------------------------------------, -- + ----------------------------------------------------------------------------------------------- < x|
   \    2                                                    2                                                  2                                                   2                                                   /
$$x < - \frac{\operatorname{atan}{\left(\frac{\sqrt{10} \sqrt{3 - \sqrt{5}}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} - \frac{2 \sqrt{5}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} \right)}}{2} + \frac{\pi}{2} \wedge \frac{\operatorname{atan}{\left(\frac{2 \sqrt{5}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} + \frac{\sqrt{10} \sqrt{3 - \sqrt{5}}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} \right)}}{2} + \frac{\pi}{2} < x$$
(x < pi/2 - atan(-2*sqrt(5)/(sqrt(15) - 5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5))) + sqrt(10)*sqrt(3 - sqrt(5))/(sqrt(15) - 5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5))))/2)∧(pi/2 + atan(2*sqrt(5)/(sqrt(15) - 5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5))) + sqrt(10)*sqrt(3 - sqrt(5))/(sqrt(15) - 5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5))))/2 < x)
Rapid solution 2 [src]
          /                                                                   ___________           \           /                                                                     ___________           \ 
          |                      ___                                  ____   /       ___            |           |                        ___                                  ____   /       ___            | 
          |                  2*\/ 5                                 \/ 10 *\/  3 - \/ 5             |           |                    2*\/ 5                                 \/ 10 *\/  3 - \/ 5             | 
      atan|------------------------------------------- + -------------------------------------------|       atan|- ------------------------------------------- + -------------------------------------------| 
          |                              _____________                                 _____________|           |                                _____________                                 _____________| 
          |  ____       ___       ___   /         ___      ____       ___       ___   /         ___ |           |    ____       ___       ___   /         ___      ____       ___       ___   /         ___ | 
 pi       \\/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5     \/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5  /  pi       \  \/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5     \/ 15  - 5*\/ 3  + 2*\/ 5 *\/  5 - 2*\/ 5  / 
(-- + -----------------------------------------------------------------------------------------------, -- - -------------------------------------------------------------------------------------------------)
 2                                                   2                                                 2                                                    2                                                 
$$x\ in\ \left(\frac{\operatorname{atan}{\left(\frac{2 \sqrt{5}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} + \frac{\sqrt{10} \sqrt{3 - \sqrt{5}}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} \right)}}{2} + \frac{\pi}{2}, - \frac{\operatorname{atan}{\left(\frac{\sqrt{10} \sqrt{3 - \sqrt{5}}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} - \frac{2 \sqrt{5}}{- 5 \sqrt{3} + 2 \sqrt{5} \sqrt{5 - 2 \sqrt{5}} + \sqrt{15}} \right)}}{2} + \frac{\pi}{2}\right)$$
x in Interval.open(atan(2*sqrt(5)/(-5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5)) + sqrt(15)) + sqrt(10)*sqrt(3 - sqrt(5))/(-5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5)) + sqrt(15)))/2 + pi/2, -atan(sqrt(10)*sqrt(3 - sqrt(5))/(-5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5)) + sqrt(15)) - 2*sqrt(5)/(-5*sqrt(3) + 2*sqrt(5)*sqrt(5 - 2*sqrt(5)) + sqrt(15)))/2 + pi/2)