Mister Exam

Other calculators


sin(7*x)>-sqrt3/2

sin(7*x)>-sqrt3/2 inequation

A inequation with variable

The solution

You have entered [src]
              ___ 
           -\/ 3  
sin(7*x) > -------
              2   
$$\sin{\left(7 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
sin(7*x) > -sqrt(3)/2
Detail solution
Given the inequality:
$$\sin{\left(7 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(7 x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(7 x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$7 x = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$7 x = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$7 x = 2 \pi n - \frac{\pi}{3}$$
$$7 x = 2 \pi n + \frac{4 \pi}{3}$$
, where n - is a integer
Divide both parts of the equation by
$$7$$
$$x_{1} = \frac{2 \pi n}{7} - \frac{\pi}{21}$$
$$x_{2} = \frac{2 \pi n}{7} + \frac{4 \pi}{21}$$
$$x_{1} = \frac{2 \pi n}{7} - \frac{\pi}{21}$$
$$x_{2} = \frac{2 \pi n}{7} + \frac{4 \pi}{21}$$
This roots
$$x_{1} = \frac{2 \pi n}{7} - \frac{\pi}{21}$$
$$x_{2} = \frac{2 \pi n}{7} + \frac{4 \pi}{21}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{2 \pi n}{7} - \frac{\pi}{21}\right) - \frac{1}{10}$$
=
$$\frac{2 \pi n}{7} - \frac{\pi}{21} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(7 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\sin{\left(7 \cdot \left(\frac{2 \pi n}{7} - \frac{\pi}{21} - \frac{1}{10}\right) \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
                   ___ 
    /7    pi\   -\/ 3  
-sin|-- + --| > -------
    \10   3 /      2   
                

Then
$$x < \frac{2 \pi n}{7} - \frac{\pi}{21}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{2 \pi n}{7} - \frac{\pi}{21} \wedge x < \frac{2 \pi n}{7} + \frac{4 \pi}{21}$$
         _____  
        /     \  
-------ο-------ο-------
       x_1      x_2
Solving inequality on a graph
Rapid solution 2 [src]
    4*pi     5*pi  2*pi 
[0, ----) U (----, ----)
     21       21    7   
$$x\ in\ \left[0, \frac{4 \pi}{21}\right) \cup \left(\frac{5 \pi}{21}, \frac{2 \pi}{7}\right)$$
x in Union(Interval.Ropen(0, 4*pi/21), Interval.open(5*pi/21, 2*pi/7))
Rapid solution [src]
  /   /            4*pi\     /5*pi          2*pi\\
Or|And|0 <= x, x < ----|, And|---- < x, x < ----||
  \   \             21 /     \ 21            7  //
$$\left(0 \leq x \wedge x < \frac{4 \pi}{21}\right) \vee \left(\frac{5 \pi}{21} < x \wedge x < \frac{2 \pi}{7}\right)$$
((0 <= x)∧(x < 4*pi/21))∨((5*pi/21 < x)∧(x < 2*pi/7))
The graph
sin(7*x)>-sqrt3/2 inequation