Given the inequality:
sin(x)+sin(2x)>0To solve this inequality, we must first solve the corresponding equation:
sin(x)+sin(2x)=0Solve:
x1=0x2=−34πx3=−πx4=−32πx5=32πx6=πx7=34πx8=2πx1=0x2=−34πx3=−πx4=−32πx5=32πx6=πx7=34πx8=2πThis roots
x2=−34πx3=−πx4=−32πx1=0x5=32πx6=πx7=34πx8=2πis the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x2For example, let's take the point
x0=x2−101=
−34π−101=
−34π−101substitute to the expression
sin(x)+sin(2x)>0sin(2(−34π−101))+sin(−34π−101)>0 /1 pi\ /1 pi\
- cos|- + --| + sin|-- + --| > 0
\5 6 / \10 3 /
one of the solutions of our inequality is:
x<−34π _____ _____ _____ _____ _____
\ / \ / \ / \ /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
x2 x3 x4 x1 x5 x6 x7 x8
Other solutions will get with the changeover to the next point
etc.
The answer:
x<−34πx>−π∧x<−32πx>0∧x<32πx>π∧x<34πx>2π