Mister Exam

sin2x+sinx>0 inequation

A inequation with variable

The solution

You have entered [src]
sin(2*x) + sin(x) > 0
sin(x)+sin(2x)>0\sin{\left(x \right)} + \sin{\left(2 x \right)} > 0
sin(x) + sin(2*x) > 0
Detail solution
Given the inequality:
sin(x)+sin(2x)>0\sin{\left(x \right)} + \sin{\left(2 x \right)} > 0
To solve this inequality, we must first solve the corresponding equation:
sin(x)+sin(2x)=0\sin{\left(x \right)} + \sin{\left(2 x \right)} = 0
Solve:
x1=0x_{1} = 0
x2=4π3x_{2} = - \frac{4 \pi}{3}
x3=πx_{3} = - \pi
x4=2π3x_{4} = - \frac{2 \pi}{3}
x5=2π3x_{5} = \frac{2 \pi}{3}
x6=πx_{6} = \pi
x7=4π3x_{7} = \frac{4 \pi}{3}
x8=2πx_{8} = 2 \pi
x1=0x_{1} = 0
x2=4π3x_{2} = - \frac{4 \pi}{3}
x3=πx_{3} = - \pi
x4=2π3x_{4} = - \frac{2 \pi}{3}
x5=2π3x_{5} = \frac{2 \pi}{3}
x6=πx_{6} = \pi
x7=4π3x_{7} = \frac{4 \pi}{3}
x8=2πx_{8} = 2 \pi
This roots
x2=4π3x_{2} = - \frac{4 \pi}{3}
x3=πx_{3} = - \pi
x4=2π3x_{4} = - \frac{2 \pi}{3}
x1=0x_{1} = 0
x5=2π3x_{5} = \frac{2 \pi}{3}
x6=πx_{6} = \pi
x7=4π3x_{7} = \frac{4 \pi}{3}
x8=2πx_{8} = 2 \pi
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x2x_{0} < x_{2}
For example, let's take the point
x0=x2110x_{0} = x_{2} - \frac{1}{10}
=
4π3110- \frac{4 \pi}{3} - \frac{1}{10}
=
4π3110- \frac{4 \pi}{3} - \frac{1}{10}
substitute to the expression
sin(x)+sin(2x)>0\sin{\left(x \right)} + \sin{\left(2 x \right)} > 0
sin(2(4π3110))+sin(4π3110)>0\sin{\left(2 \left(- \frac{4 \pi}{3} - \frac{1}{10}\right) \right)} + \sin{\left(- \frac{4 \pi}{3} - \frac{1}{10} \right)} > 0
     /1   pi\      /1    pi\    
- cos|- + --| + sin|-- + --| > 0
     \5   6 /      \10   3 /    

one of the solutions of our inequality is:
x<4π3x < - \frac{4 \pi}{3}
 _____           _____           _____           _____           _____          
      \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x2      x3      x4      x1      x5      x6      x7      x8

Other solutions will get with the changeover to the next point
etc.
The answer:
x<4π3x < - \frac{4 \pi}{3}
x>πx<2π3x > - \pi \wedge x < - \frac{2 \pi}{3}
x>0x<2π3x > 0 \wedge x < \frac{2 \pi}{3}
x>πx<4π3x > \pi \wedge x < \frac{4 \pi}{3}
x>2πx > 2 \pi
Solving inequality on a graph
0-80-60-40-20204060805-5
Rapid solution [src]
  /   /           2*pi\     /            4*pi\\
Or|And|0 < x, x < ----|, And|pi < x, x < ----||
  \   \            3  /     \             3  //
(0<xx<2π3)(π<xx<4π3)\left(0 < x \wedge x < \frac{2 \pi}{3}\right) \vee \left(\pi < x \wedge x < \frac{4 \pi}{3}\right)
((0 < x)∧(x < 2*pi/3))∨((pi < x)∧(x < 4*pi/3))
Rapid solution 2 [src]
    2*pi         4*pi 
(0, ----) U (pi, ----)
     3            3   
x in (0,2π3)(π,4π3)x\ in\ \left(0, \frac{2 \pi}{3}\right) \cup \left(\pi, \frac{4 \pi}{3}\right)
x in Union(Interval.open(0, 2*pi/3), Interval.open(pi, 4*pi/3))