Mister Exam

Other calculators

2sin^2(x)+sin(x)-1>0 inequation

A inequation with variable

The solution

You have entered [src]
     2                    
2*sin (x) + sin(x) - 1 > 0
(2sin2(x)+sin(x))1>0\left(2 \sin^{2}{\left(x \right)} + \sin{\left(x \right)}\right) - 1 > 0
2*sin(x)^2 + sin(x) - 1 > 0
Detail solution
Given the inequality:
(2sin2(x)+sin(x))1>0\left(2 \sin^{2}{\left(x \right)} + \sin{\left(x \right)}\right) - 1 > 0
To solve this inequality, we must first solve the corresponding equation:
(2sin2(x)+sin(x))1=0\left(2 \sin^{2}{\left(x \right)} + \sin{\left(x \right)}\right) - 1 = 0
Solve:
Given the equation
(2sin2(x)+sin(x))1=0\left(2 \sin^{2}{\left(x \right)} + \sin{\left(x \right)}\right) - 1 = 0
transform
sin(x)cos(2x)=0\sin{\left(x \right)} - \cos{\left(2 x \right)} = 0
(2sin2(x)+sin(x))1=0\left(2 \sin^{2}{\left(x \right)} + \sin{\left(x \right)}\right) - 1 = 0
Do replacement
w=sin(x)w = \sin{\left(x \right)}
This equation is of the form
a*w^2 + b*w + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=2a = 2
b=1b = 1
c=1c = -1
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (2) * (-1) = 9

Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)

w2 = (-b - sqrt(D)) / (2*a)

or
w1=12w_{1} = \frac{1}{2}
w2=1w_{2} = -1
do backward replacement
sin(x)=w\sin{\left(x \right)} = w
Given the equation
sin(x)=w\sin{\left(x \right)} = w
- this is the simplest trigonometric equation
This equation is transformed to
x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
Or
x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
, where n - is a integer
substitute w:
x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
x1=2πn+asin(12)x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{2} \right)}
x1=2πn+π6x_{1} = 2 \pi n + \frac{\pi}{6}
x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
x2=2πn+asin(1)x_{2} = 2 \pi n + \operatorname{asin}{\left(-1 \right)}
x2=2πnπ2x_{2} = 2 \pi n - \frac{\pi}{2}
x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
x3=2πnasin(12)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{2} \right)} + \pi
x3=2πn+5π6x_{3} = 2 \pi n + \frac{5 \pi}{6}
x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
x4=2πnasin(1)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(-1 \right)} + \pi
x4=2πn+3π2x_{4} = 2 \pi n + \frac{3 \pi}{2}
x1=π2x_{1} = - \frac{\pi}{2}
x2=π6x_{2} = \frac{\pi}{6}
x3=5π6x_{3} = \frac{5 \pi}{6}
x4=3π2x_{4} = \frac{3 \pi}{2}
x1=π2x_{1} = - \frac{\pi}{2}
x2=π6x_{2} = \frac{\pi}{6}
x3=5π6x_{3} = \frac{5 \pi}{6}
x4=3π2x_{4} = \frac{3 \pi}{2}
This roots
x1=π2x_{1} = - \frac{\pi}{2}
x2=π6x_{2} = \frac{\pi}{6}
x3=5π6x_{3} = \frac{5 \pi}{6}
x4=3π2x_{4} = \frac{3 \pi}{2}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
π2110- \frac{\pi}{2} - \frac{1}{10}
=
π2110- \frac{\pi}{2} - \frac{1}{10}
substitute to the expression
(2sin2(x)+sin(x))1>0\left(2 \sin^{2}{\left(x \right)} + \sin{\left(x \right)}\right) - 1 > 0
1+(sin(π2110)+2sin2(π2110))>0-1 + \left(\sin{\left(- \frac{\pi}{2} - \frac{1}{10} \right)} + 2 \sin^{2}{\left(- \frac{\pi}{2} - \frac{1}{10} \right)}\right) > 0
                      2          
-1 - cos(1/10) + 2*cos (1/10) > 0
    

Then
x<π2x < - \frac{\pi}{2}
no execute
one of the solutions of our inequality is:
x>π2x<π6x > - \frac{\pi}{2} \wedge x < \frac{\pi}{6}
         _____           _____  
        /     \         /     \  
-------ο-------ο-------ο-------ο-------
       x1      x2      x3      x4

Other solutions will get with the changeover to the next point
etc.
The answer:
x>π2x<π6x > - \frac{\pi}{2} \wedge x < \frac{\pi}{6}
x>5π6x<3π2x > \frac{5 \pi}{6} \wedge x < \frac{3 \pi}{2}
Solving inequality on a graph
0-60-50-40-30-20-101020304050605-5
Rapid solution 2 [src]
 pi  5*pi 
(--, ----)
 6    6   
x in (π6,5π6)x\ in\ \left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)
x in Interval.open(pi/6, 5*pi/6)
Rapid solution [src]
   /pi          5*pi\
And|-- < x, x < ----|
   \6            6  /
π6<xx<5π6\frac{\pi}{6} < x \wedge x < \frac{5 \pi}{6}
(pi/6 < x)∧(x < 5*pi/6)