Mister Exam

Other calculators

sin^2(x)+sin(x)<0 inequation

A inequation with variable

The solution

You have entered [src]
   2                
sin (x) + sin(x) < 0
sin2(x)+sin(x)<0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} < 0
sin(x)^2 + sin(x) < 0
Detail solution
Given the inequality:
sin2(x)+sin(x)<0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} < 0
To solve this inequality, we must first solve the corresponding equation:
sin2(x)+sin(x)=0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} = 0
Solve:
Given the equation
sin2(x)+sin(x)=0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} = 0
transform
(sin(x)+1)sin(x)=0\left(\sin{\left(x \right)} + 1\right) \sin{\left(x \right)} = 0
sin2(x)+sin(x)=0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} = 0
Do replacement
w=sin(x)w = \sin{\left(x \right)}
This equation is of the form
a*w^2 + b*w + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=1b = 1
c=0c = 0
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (1) * (0) = 1

Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)

w2 = (-b - sqrt(D)) / (2*a)

or
w1=0w_{1} = 0
w2=1w_{2} = -1
do backward replacement
sin(x)=w\sin{\left(x \right)} = w
Given the equation
sin(x)=w\sin{\left(x \right)} = w
- this is the simplest trigonometric equation
This equation is transformed to
x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
Or
x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
, where n - is a integer
substitute w:
x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
x1=2πn+asin(0)x_{1} = 2 \pi n + \operatorname{asin}{\left(0 \right)}
x1=2πnx_{1} = 2 \pi n
x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
x2=2πn+asin(1)x_{2} = 2 \pi n + \operatorname{asin}{\left(-1 \right)}
x2=2πnπ2x_{2} = 2 \pi n - \frac{\pi}{2}
x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
x3=2πnasin(0)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(0 \right)} + \pi
x3=2πn+πx_{3} = 2 \pi n + \pi
x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
x4=2πnasin(1)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(-1 \right)} + \pi
x4=2πn+3π2x_{4} = 2 \pi n + \frac{3 \pi}{2}
x1=0x_{1} = 0
x2=π2x_{2} = - \frac{\pi}{2}
x3=πx_{3} = \pi
x4=3π2x_{4} = \frac{3 \pi}{2}
x1=0x_{1} = 0
x2=π2x_{2} = - \frac{\pi}{2}
x3=πx_{3} = \pi
x4=3π2x_{4} = \frac{3 \pi}{2}
This roots
x2=π2x_{2} = - \frac{\pi}{2}
x1=0x_{1} = 0
x3=πx_{3} = \pi
x4=3π2x_{4} = \frac{3 \pi}{2}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x2x_{0} < x_{2}
For example, let's take the point
x0=x2110x_{0} = x_{2} - \frac{1}{10}
=
π2110- \frac{\pi}{2} - \frac{1}{10}
=
π2110- \frac{\pi}{2} - \frac{1}{10}
substitute to the expression
sin2(x)+sin(x)<0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} < 0
sin(π2110)+sin2(π2110)<0\sin{\left(- \frac{\pi}{2} - \frac{1}{10} \right)} + \sin^{2}{\left(- \frac{\pi}{2} - \frac{1}{10} \right)} < 0
   2                      
cos (1/10) - cos(1/10) < 0
    

one of the solutions of our inequality is:
x<π2x < - \frac{\pi}{2}
 _____           _____           _____          
      \         /     \         /
-------ο-------ο-------ο-------ο-------
       x2      x1      x3      x4

Other solutions will get with the changeover to the next point
etc.
The answer:
x<π2x < - \frac{\pi}{2}
x>0x<πx > 0 \wedge x < \pi
x>3π2x > \frac{3 \pi}{2}
Solving inequality on a graph
0-60-50-40-30-20-101020304050602.5-2.5
Rapid solution 2 [src]
     3*pi     3*pi       
(pi, ----) U (----, 2*pi)
      2        2         
x in (π,3π2)(3π2,2π)x\ in\ \left(\pi, \frac{3 \pi}{2}\right) \cup \left(\frac{3 \pi}{2}, 2 \pi\right)
x in Union(Interval.open(pi, 3*pi/2), Interval.open(3*pi/2, 2*pi))
Rapid solution [src]
  /   /            3*pi\     /3*pi              \\
Or|And|pi < x, x < ----|, And|---- < x, x < 2*pi||
  \   \             2  /     \ 2                //
(π<xx<3π2)(3π2<xx<2π)\left(\pi < x \wedge x < \frac{3 \pi}{2}\right) \vee \left(\frac{3 \pi}{2} < x \wedge x < 2 \pi\right)
((pi < x)∧(x < 3*pi/2))∨((3*pi/2 < x)∧(x < 2*pi))