Mister Exam

Other calculators

pi/2>arcsin(x) inequation

A inequation with variable

The solution

You have entered [src]
pi          
-- > asin(x)
2           
π2>asin(x)\frac{\pi}{2} > \operatorname{asin}{\left(x \right)}
pi/2 > asin(x)
Detail solution
Given the inequality:
π2>asin(x)\frac{\pi}{2} > \operatorname{asin}{\left(x \right)}
To solve this inequality, we must first solve the corresponding equation:
π2=asin(x)\frac{\pi}{2} = \operatorname{asin}{\left(x \right)}
Solve:
x1=1x_{1} = 1
x1=1x_{1} = 1
This roots
x1=1x_{1} = 1
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+1- \frac{1}{10} + 1
=
910\frac{9}{10}
substitute to the expression
π2>asin(x)\frac{\pi}{2} > \operatorname{asin}{\left(x \right)}
π2>asin(910)\frac{\pi}{2} > \operatorname{asin}{\left(\frac{9}{10} \right)}
pi             
-- > asin(9/10)
2              

the solution of our inequality is:
x<1x < 1
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
-5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.05-5
Rapid solution [src]
And(-oo < x, x < 1)
<xx<1-\infty < x \wedge x < 1
(-oo < x)∧(x < 1)
Rapid solution 2 [src]
(-oo, 1)
x in (,1)x\ in\ \left(-\infty, 1\right)
x in Interval.open(-oo, 1)