Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (2+n)/(1+n)
Limit of (1-cos(a*x))/(1-cos(b*x))
Limit of (a+x^2-x*(1+a))/(x^3-a^3)
Limit of (-tan(x)+sin(x))/x^3
Derivative of
:
pi/2
Integral of d{x}
:
pi/2
Identical expressions
pi/ two
Pi divide by 2
Pi divide by two
pi divide by 2
Similar expressions
pi/(2+x)
Limit of the function
/
pi/2
Limit of the function pi/2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/pi\ lim |--| n->oo\2 /
lim
n
→
∞
(
π
2
)
\lim_{n \to \infty}\left(\frac{\pi}{2}\right)
n
→
∞
lim
(
2
π
)
Limit(pi/2, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
π
2
)
=
π
2
\lim_{n \to \infty}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}
n
→
∞
lim
(
2
π
)
=
2
π
lim
n
→
0
−
(
π
2
)
=
π
2
\lim_{n \to 0^-}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}
n
→
0
−
lim
(
2
π
)
=
2
π
More at n→0 from the left
lim
n
→
0
+
(
π
2
)
=
π
2
\lim_{n \to 0^+}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}
n
→
0
+
lim
(
2
π
)
=
2
π
More at n→0 from the right
lim
n
→
1
−
(
π
2
)
=
π
2
\lim_{n \to 1^-}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}
n
→
1
−
lim
(
2
π
)
=
2
π
More at n→1 from the left
lim
n
→
1
+
(
π
2
)
=
π
2
\lim_{n \to 1^+}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}
n
→
1
+
lim
(
2
π
)
=
2
π
More at n→1 from the right
lim
n
→
−
∞
(
π
2
)
=
π
2
\lim_{n \to -\infty}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}
n
→
−
∞
lim
(
2
π
)
=
2
π
More at n→-oo
Rapid solution
[src]
pi -- 2
π
2
\frac{\pi}{2}
2
π
Expand and simplify
The graph