Mister Exam

log(6)x>1 inequation

A inequation with variable

The solution

You have entered [src]
log(6)*x > 1
$$x \log{\left(6 \right)} > 1$$
x*log(6) > 1
Detail solution
Given the inequality:
$$x \log{\left(6 \right)} > 1$$
To solve this inequality, we must first solve the corresponding equation:
$$x \log{\left(6 \right)} = 1$$
Solve:
Given the linear equation:
log(6)*x = 1

Expand brackets in the left part
log6x = 1

Divide both parts of the equation by log(6)
x = 1 / (log(6))

$$x_{1} = \frac{1}{\log{\left(6 \right)}}$$
$$x_{1} = \frac{1}{\log{\left(6 \right)}}$$
This roots
$$x_{1} = \frac{1}{\log{\left(6 \right)}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{1}{\log{\left(6 \right)}}$$
=
$$- \frac{1}{10} + \frac{1}{\log{\left(6 \right)}}$$
substitute to the expression
$$x \log{\left(6 \right)} > 1$$
$$\left(- \frac{1}{10} + \frac{1}{\log{\left(6 \right)}}\right) \log{\left(6 \right)} > 1$$
/  1      1   \           
|- -- + ------|*log(6) > 1
\  10   log(6)/           

Then
$$x < \frac{1}{\log{\left(6 \right)}}$$
no execute
the solution of our inequality is:
$$x > \frac{1}{\log{\left(6 \right)}}$$
         _____  
        /
-------ο-------
       x_1
Solving inequality on a graph
Rapid solution 2 [src]
   1        
(------, oo)
 log(6)     
$$x\ in\ \left(\frac{1}{\log{\left(6 \right)}}, \infty\right)$$
x in Interval.open(1/log(6), oo)
Rapid solution [src]
   /          1       \
And|x < oo, ------ < x|
   \        log(6)    /
$$x < \infty \wedge \frac{1}{\log{\left(6 \right)}} < x$$
(x < oo)∧(1/log(6) < x)
The graph
log(6)x>1 inequation