Given the inequality:
$$\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} < 2$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} = 2$$
Solve:
$$x_{1} = -4$$
$$x_{2} = 9$$
$$x_{1} = -4$$
$$x_{2} = 9$$
This roots
$$x_{1} = -4$$
$$x_{2} = 9$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-4 + - \frac{1}{10}$$
=
$$- \frac{41}{10}$$
substitute to the expression
$$\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} < 2$$
$$\frac{\log{\left(\left(- \frac{41}{10}\right)^{2} - \frac{\left(-41\right) 5}{10} \right)}}{\log{\left(6 \right)}} < 2$$
/3731\
log|----|
\100 / < 2
---------
log(6)
but
/3731\
log|----|
\100 / > 2
---------
log(6)
Then
$$x < -4$$
no execute
one of the solutions of our inequality is:
$$x > -4 \wedge x < 9$$
_____
/ \
-------ο-------ο-------
x1 x2