Mister Exam

Other calculators

log6(x^2-5x)<2 inequation

A inequation with variable

The solution

You have entered [src]
   / 2      \    
log\x  - 5*x/    
------------- < 2
    log(6)       
log(x25x)log(6)<2\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} < 2
log(x^2 - 5*x)/log(6) < 2
Detail solution
Given the inequality:
log(x25x)log(6)<2\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} < 2
To solve this inequality, we must first solve the corresponding equation:
log(x25x)log(6)=2\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} = 2
Solve:
x1=4x_{1} = -4
x2=9x_{2} = 9
x1=4x_{1} = -4
x2=9x_{2} = 9
This roots
x1=4x_{1} = -4
x2=9x_{2} = 9
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
4+110-4 + - \frac{1}{10}
=
4110- \frac{41}{10}
substitute to the expression
log(x25x)log(6)<2\frac{\log{\left(x^{2} - 5 x \right)}}{\log{\left(6 \right)}} < 2
log((4110)2(41)510)log(6)<2\frac{\log{\left(\left(- \frac{41}{10}\right)^{2} - \frac{\left(-41\right) 5}{10} \right)}}{\log{\left(6 \right)}} < 2
   /3731\    
log|----|    
   \100 / < 2
---------    
  log(6)     

but
   /3731\    
log|----|    
   \100 / > 2
---------    
  log(6)     

Then
x<4x < -4
no execute
one of the solutions of our inequality is:
x>4x<9x > -4 \wedge x < 9
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Rapid solution 2 [src]
(-4, 0) U (5, 9)
x in (4,0)(5,9)x\ in\ \left(-4, 0\right) \cup \left(5, 9\right)
x in Union(Interval.open(-4, 0), Interval.open(5, 9))
Rapid solution [src]
Or(And(-4 < x, x < 0), And(5 < x, x < 9))
(4<xx<0)(5<xx<9)\left(-4 < x \wedge x < 0\right) \vee \left(5 < x \wedge x < 9\right)
((-4 < x)∧(x < 0))∨((5 < x)∧(x < 9))