Given the inequality:
$$\log{\left(\frac{1}{2} \right)} \log{\left(\sqrt{5 \left(x - 4\right)} \right)} > -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(\frac{1}{2} \right)} \log{\left(\sqrt{5 \left(x - 4\right)} \right)} = -1$$
Solve:
$$x_{1} = \frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + 4$$
$$x_{1} = \frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + 4$$
This roots
$$x_{1} = \frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + 4$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + 4\right)$$
=
$$\frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + \frac{39}{10}$$
substitute to the expression
$$\log{\left(\frac{1}{2} \right)} \log{\left(\sqrt{5 \left(x - 4\right)} \right)} > -1$$
$$\log{\left(\frac{1}{2} \right)} \log{\left(\sqrt{5 \left(-4 + \left(\frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + \frac{39}{10}\right)\right)} \right)} > -1$$
/ _______________\
| / 2 |
| / ------ |
| / 1 log(2) | > -1
-log(2)*log| / - - + e |
\\/ 2 /
the solution of our inequality is:
$$x < \frac{e^{\frac{2}{\log{\left(2 \right)}}}}{5} + 4$$
_____
\
-------ο-------
x1