Mister Exam

Other calculators

log1/2*logsqrt(5)*(x-4)>-1 inequation

A inequation with variable

The solution

You have entered [src]
log(1)    /  ___\             
------*log\\/ 5 /*(x - 4) > -1
  2                           
$$\frac{\log{\left(1 \right)}}{2} \log{\left(\sqrt{5} \right)} \left(x - 4\right) > -1$$
((log(1)/2)*log(sqrt(5)))*(x - 4) > -1
Detail solution
Given the inequality:
$$\frac{\log{\left(1 \right)}}{2} \log{\left(\sqrt{5} \right)} \left(x - 4\right) > -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\log{\left(1 \right)}}{2} \log{\left(\sqrt{5} \right)} \left(x - 4\right) = -1$$
Solve:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
x0 = 0

$$\left(-4\right) \frac{\log{\left(1 \right)}}{2} \log{\left(\sqrt{5} \right)} > -1$$
0 > -1

so the inequality is always executed
Rapid solution [src]
And(-oo < x, x < oo)
$$-\infty < x \wedge x < \infty$$
(-oo < x)∧(x < oo)
Rapid solution 2 [src]
(-oo, oo)
$$x\ in\ \left(-\infty, \infty\right)$$
x in Interval(-oo, oo)