Given the inequality:
$$x x \log{\left(4 \right)} > 1$$
To solve this inequality, we must first solve the corresponding equation:
$$x x \log{\left(4 \right)} = 1$$
Solve:
Move right part of the equation to
left part with negative sign.
The equation is transformed from
$$x x \log{\left(4 \right)} = 1$$
to
$$x x \log{\left(4 \right)} - 1 = 0$$
Expand the expression in the equation
$$x x \log{\left(4 \right)} - 1 = 0$$
We get the quadratic equation
$$2 x^{2} \log{\left(2 \right)} - 1 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2 \log{\left(2 \right)}$$
$$b = 0$$
$$c = -1$$
, then
D = b^2 - 4 * a * c =
(0)^2 - 4 * (2*log(2)) * (-1) = 8*log(2)
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = - \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x_{1} = \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = - \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x_{1} = \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x_{2} = - \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
This roots
$$x_{2} = - \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x_{1} = \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}} + - \frac{1}{10}$$
=
$$- \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}} - \frac{1}{10}$$
substitute to the expression
$$x x \log{\left(4 \right)} > 1$$
$$\left(- \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}} - \frac{1}{10}\right) \log{\left(4 \right)} \left(- \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}} - \frac{1}{10}\right) > 1$$
2
/ ___ \
| 1 \/ 2 |
|- -- - ------------| *log(4) > 1
| 10 ________|
\ 2*\/ log(2) /
one of the solutions of our inequality is:
$$x < - \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
_____ _____
\ /
-------ο-------ο-------
x2 x1Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < - \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$
$$x > \frac{\sqrt{2}}{2 \sqrt{\log{\left(2 \right)}}}$$