Mister Exam

log3(2x+1)
A inequation with variable

The solution

log(2*x + 1)   log(5)
------------ < ------
   log(3)      log(3)
log(2x+1)log(3)<log(5)log(3)\frac{\log{\left(2 x + 1 \right)}}{\log{\left(3 \right)}} < \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
log(2*x + 1)/log(3) < log(5)/log(3)
Detail solution
Given the inequality:
log(2x+1)log(3)<log(5)log(3)\frac{\log{\left(2 x + 1 \right)}}{\log{\left(3 \right)}} < \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
To solve this inequality, we must first solve the corresponding equation:
log(2x+1)log(3)=log(5)log(3)\frac{\log{\left(2 x + 1 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
Solve:
Given the equation
log(2x+1)log(3)=log(5)log(3)\frac{\log{\left(2 x + 1 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
log(2x+1)log(3)=log(5)log(3)\frac{\log{\left(2 x + 1 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
Let's divide both parts of the equation by the multiplier of log =1/log(3)
log(2x+1)=log(5)\log{\left(2 x + 1 \right)} = \log{\left(5 \right)}
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
2x+1=e1log(3)log(5)1log(3)2 x + 1 = e^{\frac{\frac{1}{\log{\left(3 \right)}} \log{\left(5 \right)}}{\frac{1}{\log{\left(3 \right)}}}}
simplify
2x+1=52 x + 1 = 5
2x=42 x = 4
x=2x = 2
x1=2x_{1} = 2
x1=2x_{1} = 2
This roots
x1=2x_{1} = 2
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+2- \frac{1}{10} + 2
=
1910\frac{19}{10}
substitute to the expression
log(2x+1)log(3)<log(5)log(3)\frac{\log{\left(2 x + 1 \right)}}{\log{\left(3 \right)}} < \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
log(1+21910)log(3)<log(5)log(3)\frac{\log{\left(1 + \frac{2 \cdot 19}{10} \right)}}{\log{\left(3 \right)}} < \frac{\log{\left(5 \right)}}{\log{\left(3 \right)}}
log(24/5)   log(5)
--------- < ------
  log(3)    log(3)

the solution of our inequality is:
x<2x < 2
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
012345678-5-4-3-2-1-1010