Mister Exam

Other calculators

log3(5x-9)<=20 inequation

A inequation with variable

The solution

You have entered [src]
log(5*x - 9)      
------------ <= 20
   log(3)         
log(5x9)log(3)20\frac{\log{\left(5 x - 9 \right)}}{\log{\left(3 \right)}} \leq 20
log(5*x - 9)/log(3) <= 20
Detail solution
Given the inequality:
log(5x9)log(3)20\frac{\log{\left(5 x - 9 \right)}}{\log{\left(3 \right)}} \leq 20
To solve this inequality, we must first solve the corresponding equation:
log(5x9)log(3)=20\frac{\log{\left(5 x - 9 \right)}}{\log{\left(3 \right)}} = 20
Solve:
Given the equation
log(5x9)log(3)=20\frac{\log{\left(5 x - 9 \right)}}{\log{\left(3 \right)}} = 20
log(5x9)log(3)=20\frac{\log{\left(5 x - 9 \right)}}{\log{\left(3 \right)}} = 20
Let's divide both parts of the equation by the multiplier of log =1/log(3)
log(5x9)=20log(3)\log{\left(5 x - 9 \right)} = 20 \log{\left(3 \right)}
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
5x9=e201log(3)5 x - 9 = e^{\frac{20}{\frac{1}{\log{\left(3 \right)}}}}
simplify
5x9=34867844015 x - 9 = 3486784401
5x=34867844105 x = 3486784410
x=697356882x = 697356882
x1=697356882x_{1} = 697356882
x1=697356882x_{1} = 697356882
This roots
x1=697356882x_{1} = 697356882
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+697356882- \frac{1}{10} + 697356882
=
697356881910\frac{6973568819}{10}
substitute to the expression
log(5x9)log(3)20\frac{\log{\left(5 x - 9 \right)}}{\log{\left(3 \right)}} \leq 20
log(9+5697356881910)log(3)20\frac{\log{\left(-9 + \frac{5 \cdot 6973568819}{10} \right)}}{\log{\left(3 \right)}} \leq 20
log(6973568801/2)      
----------------- <= 20
      log(3)           

the solution of our inequality is:
x697356882x \leq 697356882
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
0-1000000000-5000000005000000001000000000150000000020000000002500000000025